To Our Parents
Preface to the Series

For almost a decade, we have been receiving tremendous responses from GATE aspirants for our earlier books: GATE Multiple Choice Questions, GATE Guide, and the GATE Cloud series. Our first book, GATE Multiple Choice Questions (MCQ), was a compilation of objective questions and solutions for all subjects of GATE Electronics & Communication Engineering in one book. The idea behind the book was that Gate aspirants who had just completed or about to finish their last semester to achieve his or her B.E/B.Tech need only to practice answering questions to crack GATE. The solutions in the book were presented in such a manner that a student needs to know fundamental concepts to understand them. We assumed that students have learned enough of the fundamentals by his or her graduation. The book was a great success, but still there were a large ratio of aspirants who needed more preparatory materials beyond just problems and solutions. This large ratio mainly included average students.

Later, we perceived that many aspirants couldn’t develop a good problem solving approach in their B.E/B.Tech. Some of them lacked the fundamentals of a subject and had difficulty understanding simple solutions. Now, we have an idea to enhance our content and present two separate books for each subject: one for theory, which contains brief theory, problem solving methods, fundamental concepts, and points-to-remember. The second book is about problems, including a vast collection of problems with descriptive and step-by-step solutions that can be understood by an average student. This was the origin of GATE Guide (the theory book) and GATE Cloud (the problem bank) series: two books for each subject. GATE Guide and GATE Cloud were published in three subjects only.

Thereafter we received an immense number of emails from our readers looking for a complete study package for all subjects and a book that combines both GATE Guide and GATE Cloud. This encouraged us to present GATE Study Package (a set of 10 books: one for each subject) for GATE Electronic and Communication Engineering. Each book in this package is adequate for the purpose of qualifying GATE for an average student. Each book contains brief theory, fundamental concepts, problem solving methodology, summary of formulae, and a solved question bank. The question bank has three exercises for each chapter: 1) Theoretical MCQs, 2) Numerical MCQs, and 3) Numerical Type Questions (based on the new GATE pattern). Solutions are presented in a descriptive and step-by-step manner, which are easy to understand for all aspirants.

We believe that each book of GATE Study Package helps a student learn fundamental concepts and develop problem solving skills for a subject, which are key essentials to crack GATE. Although we have put a vigorous effort in preparing this book, some errors may have crept in. We shall appreciate and greatly acknowledge all constructive comments, criticisms, and suggestions from the users of this book. You may write to us at rajkumar. kanodia@gmail.com and ashish.murolia@gmail.com.

Acknowledgements

We would like to express our sincere thanks to all the co-authors, editors, and reviewers for their efforts in making this project successful. We would also like to thank Team NODIA for providing professional support for this project through all phases of its development. At last, we express our gratitude to God and our Family for providing moral support and motivation.

We wish you good luck!
R. K. Kanodia
Ashish Murolia
GATE Electronics & Communications

Networks:

IES Electronics & Telecommunication

Network Theory
Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen’s theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions: parts of network functions, obtaining a network function from a given part. Transmission criteria: delay and rise time, Elmore’s and other definitions effect of cascading. Elements of network synthesis.
CHAPTER 1 BASIC CONCEPTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction to Circuit Analysis</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Basic Electric Quantities or Network Variables</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Charge</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Current</td>
<td>1</td>
</tr>
<tr>
<td>1.2.3 Voltage</td>
<td>2</td>
</tr>
<tr>
<td>1.2.4 Power</td>
<td>3</td>
</tr>
<tr>
<td>1.2.5 Energy</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Circuit Elements</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1 Active and Passive Elements</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2 Bilateral and Unilateral Elements</td>
<td>5</td>
</tr>
<tr>
<td>1.3.3 Linear and Non-linear Elements</td>
<td>5</td>
</tr>
<tr>
<td>1.3.4 Lumped and Distributed Elements</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Sources</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1 Independent Sources</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2 Dependent Sources</td>
<td>6</td>
</tr>
</tbody>
</table>

EXERCISE 1.1 8
EXERCISE 1.2 18
SOLUTIONS 1.1 23
SOLUTIONS 1.2 30

CHAPTER 2 BASIC LAWS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>2.2 Ohm's Law and Resistance</td>
<td>37</td>
</tr>
<tr>
<td>2.3 Branches, Nodes and Loops</td>
<td>39</td>
</tr>
<tr>
<td>2.4 Kirchhoff's Law</td>
<td>40</td>
</tr>
<tr>
<td>2.4.1 Kirchhoff's Current Law</td>
<td>40</td>
</tr>
<tr>
<td>2.4.2 Kirchhoff's Voltage Law</td>
<td>41</td>
</tr>
<tr>
<td>2.5 Series Resistances and Voltage Division</td>
<td>41</td>
</tr>
<tr>
<td>2.6 Parallel Resistances and Current Division</td>
<td>42</td>
</tr>
<tr>
<td>2.7 Sources in Series or Parallel</td>
<td>44</td>
</tr>
<tr>
<td>2.7.1 Series Connection of Voltage Sources</td>
<td>44</td>
</tr>
<tr>
<td>2.7.2 Parallel Connection of Identical Voltage Sources</td>
<td>44</td>
</tr>
<tr>
<td>2.7.3 Parallel Connection of Current Sources</td>
<td>44</td>
</tr>
<tr>
<td>2.7.4 Series Connection of Identical Current Sources</td>
<td>45</td>
</tr>
<tr>
<td>2.7.5 Series - Parallel Connection of Voltage and Current Sources</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER 3 GRAPH THEORY

3.1 INTRODUCTION 127
3.2 NETWORK GRAPH 127
 3.2.1 Directed and Undirected Graph 127
 3.2.2 Planar and Non-planar Graphs 128
 3.2.3 Subgraph 128
 3.2.4 Connected Graphs 129
 3.2.5 Degree of Vertex 129
3.3 TREE AND CO-TREE 129
 3.3.1 Twigs and Links 130
3.4 INCIDENCE MATRIX 131
 3.4.1 Properties of Incidence Matrix: 131
 3.4.2 Incidence Matrix and KCL 132
3.5 TIE-SET 133
 3.5.1 Tie-Set Matrix 134
 3.5.2 Tie-Set Matrix and KVL 134
 3.5.3 Tie-Set Matrix and Branch Currents 135
3.6 CUT-SET 136
 3.6.1 Fundamental Cut - Set 136
 3.6.2 Fundamental Cut-set Matrix 137
 3.6.3 Fundamental Cut-set Matrix and KCL 138
 3.6.4 Tree Branch Voltages and Fundamental Cut-set Voltages 139

EXERCISE 3.1 140
EXERCISE 3.2 149
SOLUTIONS 3.1 151
SOLUTIONS 3.2 156

CHAPTER 4 NODAL AND LOOP ANALYSIS

4.1 INTRODUCTION 159
4.2 NODAL ANALYSIS 159
4.3 MESH ANALYSIS 161
CHAPTER 5 CIRCUIT THEOREMS

5.1 INTRODUCTION 211
5.2 LINEARITY 211
5.3 SUPERPOSITION 212
5.4 SOURCE TRANSFORMATION 213
 5.4.1 Source Transformation For Dependent Source 214
5.5 THEVENIN’S THEOREM 214
 5.5.1 Thevenin’s Voltage 215
 5.5.2 Thevenin’s Resistance 215
 5.5.3 Circuit Analysis Using Thevenin Equivalent 216
5.6 NORTON’S THEOREM 217
 5.6.1 Norton’s Current 217
 5.6.2 Norton’s Resistance 218
 5.6.3 Circuit Analysis Using Norton’s Equivalent 218
5.7 TRANSFORMATION BETWEEN THEVENIN & NORTON’S EQUIVALENT CIRCUITS 219
5.8 MAXIMUM POWER TRANSFER THEOREM 219
5.9 RECIPROCITY THEOREM 221
 5.9.1 Circuit With a Voltage Source 221
 5.9.2 Circuit With a Current Source 221
5.10 SUBSTITUTION THEOREM 222
5.11 MILLMAN’S THEOREM 223
5.12 TELLEGEN’S THEOREM 223
EXERCISE 5.1 224
EXERCISE 5.2 239
SOLUTIONS 5.1 246
SOLUTIONS 5.2 272

CHAPTER 6 INDUCTOR AND CAPACITOR

6.1 CAPACITOR 297
 6.1.1 Voltage-Current Relationship of a Capacitor 297
 6.1.2 Energy Stored In a Capacitor 298
 6.1.3 Some Properties of an Ideal Capacitor 299
6.2 SERIES AND PARALLEL CAPACITORS 299
 6.2.1 Capacitors in Series 299
 6.2.2 Capacitors in Parallel 301
CHAPTER 7 FIRST ORDER RL AND RC CIRCUITS

7.1 INTRODUCTION

7.2 SOURCE FREE OR ZERO-INPUT RESPONSE
 7.2.1 Source-Free RC Circuit
 7.2.2 Source-Free RL circuit

7.3 THE UNIT STEP FUNCTION

7.4 DC OR STEP RESPONSE OF FIRST ORDER CIRCUIT

7.5 STEP RESPONSE OF AN RC CIRCUIT
 7.5.1 Complete Response
 7.5.2 Complete Response in terms of Initial and Final Conditions

7.6 STEP RESPONSE OF AN RL CIRCUIT
 7.6.1 Complete Response
 7.6.2 Complete Response in terms of Initial and Final Conditions

7.7 STEP BY STEP APPROACH TO SOLVE RL AND RC CIRCUITS
 7.7.1 Solution Using Capacitor Voltage or Inductor Current
 7.7.2 General Method

7.8 STABILITY OF FIRST ORDER CIRCUITS

EXERCISE 7.1
EXERCISE 7.2
SOLUTIONS 7.1
SOLUTIONS 7.2

CHAPTER 8 SECOND ORDER CIRCUITS

8.1 INTRODUCTION

8.2 SOURCE-FREE SERIES RLC CIRCUIT

8.3 SOURCE-FREE PARALLEL RLC CIRCUIT

8.4 STEP BY STEP APPROACH OF SOLVING SECOND ORDER CIRCUITS

8.5 STEP RESPONSE OF SERIES RLC CIRCUIT

CHAPTER 10 COMPLEX POWER 630
 10.5.1 Alternative Forms For Complex Power 631
10.6 POWER FACTOR 632
10.7 MAXIMUM AVERAGE POWER TRANSFER THEOREM 634
 10.7.1 Maximum Average Power Transfer, when Z is Restricted 635
10.8 AC POWER CONSERVATION 636
10.9 POWER FACTOR CORRECTION 636
EXERCISE 10.1 638
EXERCISE 10.2 648
SOLUTIONS 10.1 653
SOLUTIONS 10.2 669

CHAPTER 11 THREE PHASE CIRCUITS
11.1 INTRODUCTION 683
11.2 BALANCED THREE PHASE VOLTAGE SOURCES 683
 11.2.1 Y-connected Three-Phase Voltage Source 683
 11.2.2 Δ-connected Three-Phase Voltage Source 686
11.3 BALANCED THREE-PHASE LOADS 688
 11.3.1 Y-connected Load 688
 11.3.2 Δ-connected Load 689
11.4 ANALYSIS OF BALANCED THREE-PHASE CIRCUITS 689
 11.4.1 Balanced Y-Y Connection 689
 11.4.2 Balanced Y-Δ Connection 691
 11.4.3 Balanced Δ-Δ Connection 692
 11.4.4 Balanced Δ-Y connection 693
11.5 POWER IN A BALANCED THREE-PHASE SYSTEM 694
11.6 TWO-WATTMETER POWER MEASUREMENT 695
EXERCISE 11.1 697
EXERCISE 11.2 706
SOLUTIONS 11.1 709
SOLUTIONS 11.2 722

CHAPTER 12 MAGNETICALLY COUPLED CIRCUITS
12.1 INTRODUCTION 729
12.2 MUTUAL INDUCTANCE 729
12.3 DOT CONVENTION 730
12.4 ANALYSIS OF CIRCUITS HAVING COUPLED INDUCTORS 731
12.5 SERIES CONNECTION OF COUPLED COILS 732
 12.5.1 Series Adding Connection 732
 12.5.2 Series Opposing Connection 733
12.6 PARALLEL CONNECTION OF COUPLED COILS 734
CHAPTER 15 TWO PORT NETWORK

15.1 INTRODUCTION 887

15.2 IMPEDANCE PARAMETERS 887
15.2.1 Some Equivalent Networks 889
15.2.2 Input Impedance of a Terminated Two-port Network in Terms of Impedance Parameters 889
15.2.3 Thevenin Equivalent Across Output Port in Terms of Impedance Parameters 890

15.3 ADMITTANCE PARAMETERS 891
15.3.1 Some Equivalent Networks 892
15.3.2 Input Admittance of a Terminated Two-port Networks in Terms of Admittance Parameters 893

15.4 HYBRID PARAMETERS 894
15.4.1 Equivalent Network 895
15.4.2 Input Impedance of a Terminated Two-port Networks in Terms of Hybrid Parameters 895
15.4.3 Inverse Hybrid Parameters 896

15.5 TRANSMISSION PARAMETERS 897
15.5.1 Input Impedance of a Terminated Two-port Networks in Terms of ABCD Parameters 898

15.6 SYMMETRICAL AND RECIPROCAL NETWORK 898

15.7 RELATIONSHIP BETWEEN TWO-PORT PARAMETERS 899

15.8 INTERCONNECTION OF TWO-PORT NETWORKS 900
15.8.1 Series Connection 900
15.8.2 Parallel Connection 901
15.8.3 Cascade Connection 902

EXERCISE 15.1 904
EXERCISE 15.2 920
SOLUTIONS 15.1 924
SOLUTIONS 15.2 955

5.1 INTRODUCTION

In this chapter we study the methods of simplifying the analysis of more complicated circuits. We shall learn some of the circuit theorems which are used to reduce a complex circuit into a simple equivalent circuit. This includes Thevenin theorem and Norton theorem. These theorems are applicable to linear circuits, so we first discuss the concept of circuit linearity.

5.2 LINEARITY

A system is linear if it satisfies the following two properties

Homogeneity Property

The homogeneity property requires that if the input (excitation) is multiplied by a constant, then the output (response) is multiplied by the same constant. For a resistor, for example, Ohm's law relates the input \(I \) to the output \(V \),

\[V = IR \]

If the current is increased by a constant \(k \), then the voltage increases correspondingly by \(k \), that is,

\[kIR = kV \]

Additivity Property

The additivity property requires that the response to a sum of inputs is the sum of the responses to each input applied separately. Using the voltage-current relationship of a resistor, if

\[V_1 = I_1R \quad \text{(Voltage due to current } I_1) \]

and

\[V_2 = I_2R \quad \text{(Voltage due to current } I_2) \]

then, applying current \((I_1 + I_2) \) gives

\[V = (I_1 + I_2)R = I_1R + I_2R = V_1 + V_2 \]

These two properties defining a linear system can be combined into a single statement as

\[y = a_1x_1 + a_2x_2 + \ldots + a_nx_n \]

where \(x_1, x_2, \ldots, x_n \) are the voltage and current values of the independent sources in the circuit and \(a_1 \) through \(a_n \) are properly dimensioned constants.

Thus, a linear circuit is one whose output is linearly related (or directly...
proportional) to its input. For example, consider the linear circuit shown in figure 5.2.1. It is excited by an input voltage source \(V_s \), and the current through load \(R \) is taken as output (response).

![Fig. 5.2.1 A Linear Circuit](image)

Suppose \(V_s = 5 \text{ V} \) gives \(I = 1 \text{ A} \). According to the linearity principle, \(V_s = 10 \text{ V} \) will give \(I = 2 \text{ A} \). Similarly, \(I = 4 \text{ mA} \) must be due to \(V_s = 20 \text{ mV} \).

Note that ratio \(V_s / I \) remains constant, since the system is linear.

NOTE:
We know that the relationship between power and voltage (or current) is not linear. Therefore, linearity does not appliable to power calculations.

5.3 SUPERPOSITION

The number of circuits required to solve a network using superposition theorem is equal to the number of independent sources present in the network. It states that

In any linear circuit containing multiple independent sources the total current through or voltage across an element can be determined by algebraically adding the voltage or current due to each independent source acting alone with all other independent sources set to zero.

An independent voltage source is set to zero by replacing it with a 0 V source (short circuit) and an independent current source is set to zero by replacing it with 0 A source (an open circuit). The following methodology illustrates the procedure of applying superposition to a given circuit.

METHODOLOGY

1. Consider one independent source (either voltage or current) at a time, short circuit all other voltage sources and open circuit all other current sources.
2. Dependent sources can not be set to zero as they are controlled by other circuit parameters.
3. Calculate the current or voltage due to the single source using any method (KCL, KVL, nodal or mesh analysis).
4. Repeat the above steps for each source.
5. Algebraically add the results obtained by each source to get the total response.

NOTE:
Superposition theorem can not be applied to power calculations since power is not a linear quantity.
5.4 SOURCE TRANSFORMATION

It states that an independent voltage source \(V_s \) in series with a resistance \(R \) is equivalent to an independent current source \(I_s = V_s / R \), in parallel with a resistance \(R \).

or

An independent current source \(I_s \) in parallel with a resistance \(R \) is equivalent to an independent voltage source \(V_s = I_s R \), in series with a resistance \(R \).

Figure 5.4.1 shows the source transformation of an independent source. The following points are to be noted while applying source transformation.

1. Note that head of the current source arrow corresponds to the +ve terminal of the voltage source. The following figure illustrates this.

2. Source conversion are equivalent at their external terminals only i.e. the voltage-current relationship at their external terminals remains same. The two circuits in figure 5.4.3a and 5.4.3b are equivalent, provided they have the same voltage-current relation at terminals a-b.

3. Source transformation is not applicable to ideal voltage sources as \(R_s = 0 \) for an ideal voltage source. So, equivalent current source value \(I_s = V_s / R \rightarrow \infty \). Similarly it is not applicable to ideal current source.

Fig. 5.4.1 Source Transformation of Independent Source

Fig. 5.4.2 Source Transformation of Independent Source

Fig. 5.4.3 An example of source transformation (a) Circuit with a voltage source (b) Equivalent circuit when the voltage source is transformed into current sources
because for an ideal current source \(R_s = \infty \), so equivalent voltage source value will not be finite.

5.4.1 Source Transformation For Dependent Source

Source transformation is also applicable to dependent source in the same manner as for independent sources. It states that:

- A dependent voltage source \(V_x \) in series with a resistance \(R \) is equivalent to a dependent current source \(I_x = V_x/R \), in parallel with a resistance \(R \), keeping the controlling voltage or current unaffected.

- A dependent current source \(I_x \) in parallel with a resistance \(R \) is equivalent to an dependent voltage source \(V_x = I_xR \), in series with a resistance \(R \), keeping the controlling voltage or current unaffected.

Figure 5.4.4 shows the source transformation of an dependent source.

![Source Transformation of Dependent Sources](image)

5.5 THEVENIN’S THEOREM

It states that any network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal voltage source, \(V_{th} \), in series with an equivalent resistance, \(R_{th} \) as illustrated in the figure 5.5.1.

![Illustration of Thevenin Theorem](image)

where \(V_{th} \) is called Thevenin’s equivalent voltage or simply Thevenin voltage and \(R_{th} \) is called Thevenin’s equivalent resistance or simply Thevenin resistance.

The methods of obtaining Thevenin equivalent voltage and resistance are given in the following sections.
5.5.1 Thevenin’s Voltage

The equivalent Thevenin voltage \(V_{Th}\) is equal to the open-circuit voltage present at the load terminals (with the load removed). Therefore, it is also denoted by \(V_{oc}\).

![Diagram of Thevenin's Voltage](image)

Figure 5.5.2 Equivalence of Open circuit and Thevenin Voltage

Figure 5.5.2 illustrates that the open-circuit voltage, \(V_{oc}\), and the Thevenin voltage, \(V_{Th}\), must be the same because in the circuit consisting of \(V_{Th}\) and \(R_{Th}\), the voltage \(V_{oc}\) must equal \(V_{Th}\), since no current flows through \(R_{Th}\) and therefore the voltage across \(R_{Th}\) is zero. Kirchhoff’s voltage law confirms that

\[V_{Th} = R_{Th}(0) + V_{oc} = V_{oc} \]

The procedure of obtaining Thevenin voltage is given in the following methodology.

METHODOLOGY 1

1. Remove the load i.e open circuit the load terminals.
2. Define the open-circuit voltage \(V_{oc}\) across the open load terminals.
3. Apply any preferred method (KCL, KVL, nodal analysis, mesh analysis etc.) to solve for \(V_{oc}\).
4. The Thevenin voltage is \(V_{Th} = V_{oc}\).

NOTE:

Note that this methodology is applicable with the circuits containing both the dependent and independent source.

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then its open circuit voltage or Thevenin voltage will simply be zero.

NOTE:

For the Thevenin voltage we may use the terms Thevenin voltage or open circuit voltage interchangeably.

5.5.2 Thevenin’s Resistance

Thevenin resistance is the input or equivalent resistance at the open circuit terminals \(a, b\) when all independent sources are set to zero (voltage sources replaced by short circuits and current sources replaced by open circuits).

We consider the following cases where Thevenin resistance \(R_{Th}\) is to be determined.
Case 1: Circuit With Independent Sources only

If the network has no dependent sources, we turn off all independent sources. R_{Th} is the input resistance or equivalent resistance of the network looking between terminals a and b, as shown in figure 5.5.3.

![Fig 5.5.3 Circuit for Obtaining R_{Th}](image)

Case 2: Circuit With Both Dependent and Independent Sources

Different methods can be used to determine Thevenin equivalent resistance of a circuit containing dependent sources. We may follow the given two methodologies. Both the methods are also applicable to circuit with independent sources only (case 1).

Using Test Source

METHODOLOGY 2

1. Set all independent sources to zero (Short circuit independent voltage source and open circuit independent current source).
2. Remove the load, and put a test source V_{test} across its terminals. Let the current through test source is I_{test}. Alternatively, we can put a test source I_{test} across load terminals and assume the voltage across it is V_{test}. Either method would give same result.
3. Thevenin resistance is given by $R_{Th} = V_{test} / I_{test}$.

NOTE:

We may use $V_{test} = 1V$ or $I_{test} = 1A$.

Using Short Circuit Current

METHODOLOGY 3

1. Connect a short circuit between terminal a and b.
2. Be careful, do not set independent sources zero in this method because we have to find short circuit current.
3. Now, obtain the short circuit current I_{sc} through terminals a, b.
4. Thevenin resistance is given as $R_{Th} = V_{oc} / I_{sc}$ where V_{oc} is open circuit voltage or Thevenin voltage across terminal a, b which can be obtained by same method given previously.

5.5.3 Circuit Analysis Using Thevenin Equivalent

Thevenin’s theorem is very important in circuit analysis. It simplifies a
A large circuit may be replaced by a single independent voltage source and a single resistor. The equivalent network behaves the same way externally as the original circuit. Consider a linear circuit terminated by a load R_L, as shown in figure 5.5.5. The current I_L through the load and the voltage V_L across the load are easily determined once the Thevenin equivalent of the circuit at the load’s terminals is obtained.

![Fig. 5.5.5 A Circuit with a Load and its Equivalent Thevenin Circuit](image)

Current through the load R_L:

$$I_L = \frac{V_{Th}}{R_{Th} + R_L}$$

Voltage across the load R_L:

$$V_L = R_L I_L = \frac{R_L}{R_{Th} + R_L} V_{Th}$$

5.6 NORTON’S THEOREM

Any network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal current source, I_N, in parallel with an equivalent resistance, R_N, as illustrated in figure 5.6.1.

![Fig. 5.6.1 Illustration of Norton Theorem](image)

where I_N is called Norton’s equivalent current or simply Norton current and R_N is called Norton’s equivalent resistance. The methods of obtaining Norton equivalent current and resistance are given in the following sections.

5.6.1 Norton’s Current

The Norton equivalent current is equal to the short-circuit current that would flow when the load replaced by a short circuit. Therefore, it is also called short circuit current I_{sc}.
Figure 5.6.2 illustrates that if we replace the load by a short circuit, then current flowing through this short circuit will be same as Norton current I_N

\[I_N = I_{sc} \]

The procedure of obtaining Norton current is given in the following methodology. Note that this methodology is applicable with the circuits containing both the dependent and independent source.

METHODOLOGY

1. Replace the load with a short circuit.
2. Define the short circuit current, I_{sc}, through load terminal.
3. Obtain I_{sc} using any method (KCL, KVL, nodal analysis, loop analysis).
4. The Norton current is $I_N = I_{sc}$.

If a circuit contains dependent sources only, i.e. there is no independent source present in the network then the short circuit current or Norton current will simply be zero.

5.6.2 Norton's Resistance

Norton resistance is the input or equivalent resistance seen at the load terminals when all independent sources are set to zero (voltage sources replaced by short circuits and current sources replaced by open circuits) i.e. Norton resistance is same as Thevenin's resistance

\[R_N = R_{th} \]

So, we can obtain Norton resistance using same methodologies as for Thevenin resistance. Dependent and independent sources are treated the same way as in Thevenin's theorem.

NOTE:

For the Norton current we may use the term Norton current or short circuit current interchangeably.

5.6.3 Circuit Analysis Using Norton's Equivalent

As discussed for Thevenin's theorem, Norton equivalent is also useful in circuit analysis. It simplifies a circuit. Consider a linear circuit terminated by a load R_L, as shown in figure 5.6.4. The current I_L through the load and the voltage V_L across the load are easily determined once the Norton equivalent of the circuit at the load's terminals is obtained,
5.7 TRANSFORMATION BETWEEN THEVENIN & NORTON’S EQUIVALENT CIRCUITS

From source transformation it is easy to find Norton’s and Thevenin’s equivalent circuit from one form to another as following.

\[
R_{Th} = R_N
\]

\[
V_{Th} = I_N R_N
\]

\[
I_N = \frac{V_{Th}}{R_{Th}}
\]

5.8 MAXIMUM POWER TRANSFER THEOREM

Maximum power transfer theorem states that a load resistance \(R_L \) will receive maximum power from a circuit when the load resistance is equal to Thevenin’s/Norton’s resistance seen at load terminals.

i.e. \(R_L = R_{Th} \), \(R_L = R_{Th} \) (For maximum power transfer)

In other words a network delivers maximum power to a load resistance \(R_L \) when \(R_L \) is equal to Thevenin equivalent resistance of the network.

PROOF:
Consider the Thevenin equivalent circuit of figure 5.8.1 with Thevenin voltage \(V_{Th} \) and Thevenin resistance \(R_{Th} \).
Fig. 5.8.1 A Circuit Used for Maximum Power Transfer

We assume that we can adjust the load resistance R_L. The power absorbed by the load, P_L, is given by the expression

$$P_L = I_L^2 R_L \quad (5.8.1)$$

and that the load current is given as,

$$I_L = \frac{V_{Th}}{R_L + R_{Th}} \quad (5.8.2)$$

Substituting I_L from equation (5.8.2) into equation (5.8.1)

$$P_L = \frac{V_{Th}^2 (R_L + R_{Th})}{(R_L + R_{Th})^2} R_L \quad (5.8.3)$$

To find the value of R_L that maximizes the expression for P_L (assuming that V_{Th} and R_{Th} are fixed), we write

$$\frac{dP_L}{dR_L} = 0$$

Computing the derivative, we obtain the following expression:

$$\frac{dP_L}{dR_L} = \frac{V_{Th}^2 (R_L + R_{Th})^2 - 2V_{Th} R_L (R_L + R_{Th})}{(R_L + R_{Th})^4}$$

which leads to the expression

$$(R_L + R_{Th})^2 - 2R_L(R_L + R_{Th}) = 0$$

or

$$R_L = R_{Th}$$

Thus, in order to transfer maximum power to a load, the equivalent source and load resistances must be matched, that is, equal to each other.

$$R_L = R_{Th}$$

The maximum power transferred is obtained by substituting $R_L = R_{Th}$ into equation (5.8.3)

$$P_{max} = \frac{V_{Th}^2 R_{Th}}{(R_{Th} + R_{Th})^2} = \frac{V_{Th}^2}{4R_{Th}} \quad (5.8.4)$$

or,

$$P_{max} = \frac{V_{Th}^2}{4R_L}$$

If the Load resistance R_L is fixed:

Now consider a problem where the load resistance R_L is fixed and Thevenin resistance or source resistance R_s is being varied, then

$$P_L = \frac{V_{Th}^2}{(R_{Th} + R_{Th})^2} R_L$$

To obtain maximum P_L denominator should be minimum or $R_s = 0$. This can be solved by differentiating the expression for the load power, P_L, with respect to R_s instead of R_L.

The step-by-step methodology to solve problems based on maximum power transfer is given as following:

Methodology

1. Remove the load R_L and find the Thevenin equivalent voltage V_{Th} and resistance R_{Th} for the remainder of the circuit.
2. Select $R_L = R_{Th}$, for maximum power transfer.
3. The maximum average power transfer can be calculated using $P_{max} = \frac{V_{Th}^2}{4R_{Th}}$.
5.9 RECIPROCITY THEOREM

The reciprocity theorem is a theorem which can only be used with single source circuits (either voltage or current source). The theorem states the following

5.9.1 Circuit With a Voltage Source

In any linear bilateral network, if a single voltage source \(V_a \) in branch \(a \) produces a current \(I_b \) in another branch \(b \), then if the voltage source \(V_a \) is removed (i.e. short circuited) and inserted in branch \(b \), it will produce a current \(I_b \) in branch \(a \).

In other words, it states that the ratio of response (output) to excitation (input) remains constant if the positions of output and input are interchanged in a reciprocal network. Consider the network shown in figure 5.9.1a and b. Using reciprocity theorem we may write

\[
\frac{V_1}{I_1} = \frac{V_2}{I_2}
\]

(5.9.1)

Fig. 5.9.1 Illustration of Reciprocity Theorem for a Voltage Source

When applying the reciprocity theorem for a voltage source, the following steps must be followed:
1. The voltage source is replaced by a short circuit in the original location.
2. The polarity of the voltage source in the new location have the same correspondence with branch current, in each position, otherwise a negative sign appears in the expression (5.9.1).

This can be explained in a better way through following example.

5.9.2 Circuit With a Current Source

In any linear bilateral network, if a single current source \(I_a \) in branch \(a \) produces a voltage \(V_b \) in another branch \(b \), then if the current source \(I_a \) is removed (i.e. open circuited) and inserted in branch \(b \), it will produce a voltage \(V_b \) in open-circuited branch \(a \).

Fig. 5.9.2 Illustration of Reciprocity Theorem for a Current Source
Again, the ratio of voltage and current remains constant. Consider the network shown in figure 5.9.2a and 5.9.2b. Using reciprocity theorem we may write

\[\frac{V_1}{I_1} = \frac{V_2}{I_2} \]

(5.9.2)

When applying the reciprocity theorem for a current source, the following conditions must be met:
1. The current source is replaced by an open circuit in the original location.
2. The direction of the current source in the new location have the same correspondence with voltage polarity, in each position, otherwise a negative sign appears in the expression (5.9.2).

5.10 SUBSTITUTION THEOREM

If the voltage across and the current through any branch of a dc bilateral network are known, this branch can be replaced by any combination of elements that will maintain the same voltage across and current through the chosen branch.

For example consider the circuit of figure 5.10.1.

![Fig 5.10.1 A Circuit having Voltage $V_{ab} = 6$ V and Current $I = 1$ A in Branch ab](image)

The voltage V_{ab} and the current I in the circuit are given as

\[V_{ab} = \left(\frac{6}{6+4}\right)10 = 6 \text{ V} \]

\[I = \frac{10}{6+4} = 1 \text{ A} \]

The 6Ω resistor in branch a-b may be replaced with any combination of components, provided that the terminal voltage and current must be the same.

We see that the branches of figure 5.10.2a-e are each equivalent to the original branch between terminals a and b of the circuit in figure 5.10.1.
Fig. 5.10.2 Equivalent Circuits for Branch ab

Also consider that the response of the remainder of the circuit of figure 5.10.1 is unchanged by substituting any one of the equivalent branches.

5.11 MILLMAN'S THEOREM

Millman’s theorem is used to reduce a circuit that contains several branches in parallel where each branch has a voltage source in series with a resistor as shown in figure 5.11.1.

Mathematically

\[V_{eq} = \frac{V_1 G_1 + V_2 G_2 + V_3 G_3 + \ldots + V_n G_n}{G_1 + G_2 + G_3 + \ldots + G_n} \]

\[R_{eq} = \frac{1}{G_{eq}} = \frac{1}{G_1 + G_2 + G_3 + \ldots + G_n} \]

where conductances

\[G_1 = \frac{1}{R_1}, \quad G_2 = \frac{1}{R_2}, \quad G_3 = \frac{1}{R_3}, \quad \ldots \]

In terms of resistances

\[V_{eq} = \frac{V_1/R_1 + V_2/R_2 + V_3/R_3 + \ldots + V_n/R_n}{1/R_1 + 1/R_2 + 1/R_3 + \ldots + 1/R_n} \]

\[R_{eq} = \frac{1}{G_{eq}} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3 + \ldots + 1/R_n} \]

5.12 TELLEGEN’S THEOREM

Tellegen’s theorem states that the sum of the power dissipations in a lumped network at any instant is always zero. This is supported by Kirchhoff’s voltage and current laws. Tellegen’s theorem is valid for any lumped network which may be linear or non-linear, passive or active, time-varying or time-invariant.

For a network with \(n \) branches, the power summation equation is,

\[\sum_{k=1}^{n} V_k I_k = 0 \]

One application of Tellegen’s theorem is checking the quantities obtained when a circuit is analyzed. If the individual branch power dissipations do not add up to zero, then some of the calculated quantities are incorrect.
MCQ 5.1.1

The linear network in the figure contains resistors and dependent sources only. When $V_s = 10\, \text{V}$, the power supplied by the voltage source is 40 W. What will be the power supplied by the source if $V_s = 5\, \text{V}$?

(A) 20 W
(B) 10 W
(C) 40 W
(D) can not be determined

MCQ 5.1.2

In the circuit below, it is given that when $V_s = 20\, \text{V}$, $I_L = 200\, \text{mA}$. What values of I_L and V_s will be required such that power absorbed by R_L is 2.5 W?

(A) 1A, 2.5 V
(B) 0.5 A, 2 V
(C) 0.5 A, 50 V
(D) 2 A, 1.25 V

MCQ 5.1.3

For the circuit shown in figure below, some measurements are made and listed in the table.

Which of the following equation is true for I_L?

(A) $I_L = 0.6V_s + 0.4I_s$
(B) $I_L = 0.2V_s - 0.3I_s$
(C) $I_L = 0.2V_s + 0.3I_s$
(D) $I_L = 0.4V_s - 0.6I_s$
MCQ 5.1.4 In the circuit below, the voltage drop across the resistance R_2 will be equal to

\[16 \text{ V} - 16 \text{ V} = 0 \text{ V} \]

(A) 46 volt (B) 38 volt (C) 22 volt (D) 14 volt

MCQ 5.1.5 In the circuit below, current $I = I_1 + I_2 + I_3$, where I_1, I_2 and I_3 are currents due to 60 A, 30 A and 30 V sources acting alone. The values of I_1, I_2 and I_3 are respectively

\[I = \frac{30 \text{ A}}{4 \Omega} + \frac{30 \text{ V}}{30 \Omega} - \frac{12 \text{ A}}{6 \Omega} \]

(A) 8 A, 8 A, −4 A (B) 12 A, 12 A, −5 A (C) 4 A, 4 A, −1 A (D) 2 A, 2 A, −4 A

MCQ 5.1.6 In the circuit below, current I is equal to sum of two currents I_1 and I_2. What are the values of I_1 and I_2?

\[I = \frac{6 \text{ A}}{6 \Omega} + \frac{18 \text{ V}}{12 \Omega} - \frac{14 \text{ A}}{35 \Omega} \]

(A) 6 A, 1 A (B) 9 A, 6 A (C) 3 A, 1 A (D) 3 A, 4 A

MCQ 5.1.7 A network consists only of independent current sources and resistors. If the values of all the current sources are doubled, then values of node voltages (A) remains same (B) will be doubled (C) will be halved (D) changes in some other way.

MCQ 5.1.8 Consider a network which consists of resistors and voltage sources only. If the values of all the voltage sources are doubled, then the values of mesh current will be (A) doubled (B) same (C) halved (D) none of these
MCQ 5.1.9 The value of current I in the circuit below is equal to

![Circuit Diagram](Image)

(A) $\frac{3}{2}$ A
(C) 2 A
(B) 1 A
(D) 4 A

MCQ 5.1.10 In the circuit below, the 12 V source

![Circuit Diagram](Image)

(A) absorbs 36 W
(B) delivers 4 W
(C) absorbs 100 W
(D) delivers 36 W

MCQ 5.1.11 Which of the following circuits is equivalent to the circuit shown below?

![Circuit Diagram](Image)

(A)
(B)
(C)
(D) None of these

MCQ 5.1.12 Consider a dependent current source shown in figure below.

![Circuit Diagram](Image)
The source transformation of above is given by

- (A) $20I_x$
- (B) $20I_x$
- (C) $20I_x$
- (D) Source transformation does not applicable to dependent sources

MCQ 5.1.13 Consider a circuit shown in the figure

Which of the following circuit is equivalent to the above circuit?

- (A) $18 \, \text{V}$, $18 \, \Omega$
- (B) $1 \, \text{A}$, $18 \, \Omega$
- (C) $18 \, \text{V}$
- (D) $34 \, \text{V}$

MCQ 5.1.14 For the circuit shown in the figure the Thevenin voltage and resistance seen from the terminal a-b are respectively

- (A) $34 \, \text{V}$, $0 \, \Omega$
- (B) $20 \, \text{V}$, $24 \, \Omega$
- (C) $14 \, \text{V}$, $0 \, \Omega$
- (D) $-14 \, \text{V}$, $24 \, \Omega$
In the following circuit, Thevenin voltage and resistance across terminal a and b respectively are

- (A) 10 V, 18 Ω
- (B) 2 V, 18 Ω
- (C) 10 V, 18.67 Ω
- (D) 2 V, 18.67 Ω

The value of R_{Th} and V_{Th} such that the circuit of figure (B) is the Thevenin equivalent circuit of the circuit shown in figure (A), will be equal to

- (A) $R_{Th} = 6 Ω, V_{Th} = 4 V$
- (B) $R_{Th} = 6 Ω, V_{Th} = 28 V$
- (C) $R_{Th} = 2 Ω, V_{Th} = 24 V$
- (D) $R_{Th} = 10 Ω, V_{Th} = 14 V$

What values of R_{Th} and V_{Th} will cause the circuit of figure (B) to be the equivalent circuit of figure (A)?

- (A) 2.4 Ω, −24 V
- (B) 3 Ω, 16 V
- (C) 10 Ω, 24 V
- (D) 10 Ω, −24 V

Common Data For Q. 18 and 19:

Consider the two circuits shown in figure (A) and figure (B) below.
MCQ 5.1.18 The value of Thevenin voltage across terminals a-b of figure (A) and figure (B) respectively are
(A) 30 V, 36 V (B) 28 V, −12 V
(C) 18 V, 12 V (D) 30 V, −12 V

MCQ 5.1.19 The value of Thevenin resistance across terminals a-b of figure (A) and figure (B) respectively are
(A) zero, 3 Ω (B) 9 Ω, 16 Ω
(C) 2 Ω, 3 Ω (D) zero, 16 Ω

MCQ 5.1.20 For a network having resistors and independent sources, it is desired to obtain Thevenin equivalent across the load which is in parallel with an ideal current source. Then which of the following statement is true?
(A) The Thevenin equivalent circuit is simply that of a voltage source.
(B) The Thevenin equivalent circuit consists of a voltage source and a series resistor.
(C) The Thevenin equivalent circuit does not exist but the Norton equivalent does exist.
(D) None of these

MCQ 5.1.21 The Thevenin equivalent circuit of a network consists only of a resistor (Thevenin voltage is zero). Then which of the following elements might be contained in the network?
(A) resistor and independent sources
(B) resistor only
(C) resistor and dependent sources
(D) resistor, independent sources and dependent sources.

MCQ 5.1.22 For the circuit shown in the figure, the Thevenin’s voltage and resistance looking into a-b are

\[\begin{align*}
2V_x & \quad \quad 3 \Omega \\
6 \Omega & \quad V_x \\
1 \ A & \quad b \\
& \quad 3 \Omega \\
& \quad a \\
\end{align*} \]
(A) 2 V, 3 Ω (B) 2 V, 2 Ω
(C) 6 V, −9 Ω (D) 6 V, −3 Ω

MCQ 5.1.23 For the following circuit, values of voltage \(V \) for different values of \(R \) are given in the table.

<table>
<thead>
<tr>
<th>(R)</th>
<th>(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Ω</td>
<td>6 V</td>
</tr>
<tr>
<td>8 Ω</td>
<td>8 V</td>
</tr>
</tbody>
</table>

The Thevenin voltage and resistance of the unknown circuit are respectively.
(A) 14 V, 4 Ω
(B) 4 V, 1 Ω
(C) 14 V, 6 Ω
(D) 10 V, 2 Ω
In the circuit shown below, the Norton equivalent current and resistance with respect to terminal a-b is

\[20 \text{ V} \]
\[24 \Omega \]
\[2 \text{ A} \]
\[b \]
\[a \]

(A) \(\frac{17}{2} \text{ A}, 0 \Omega \)
(B) \(2 \text{ A}, 24 \Omega \)
(C) \(-\frac{17}{2} \text{ A}, 24 \Omega \)
(D) \(-2 \text{ A}, 24 \Omega \)

The Norton equivalent circuit for the circuit shown in figure is given by

\[2 \text{ A} \]
\[2 \Omega \]
\[1 \text{ A} \]
\[b \]
\[a \]

(A) \(2.5 \text{ A} \)
(B) \(1.5 \text{ A} \)
(C) \(2.5 \text{ A} \)
(D) \(1.5 \text{ A} \)

What are the values of equivalent Norton current source \(I_N \) and equivalent resistance \(R_N \) across the load terminal of the circuit shown in figure?

\[10 \text{ A} \]
\[6 \Omega \]
\[3 \Omega \]
\[b \]
\[a \]

\[\text{Load} \]

<table>
<thead>
<tr>
<th>(I_N)</th>
<th>(R_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 10 A</td>
<td>2 \Omega</td>
</tr>
<tr>
<td>(B) 10 A</td>
<td>9 \Omega</td>
</tr>
<tr>
<td>(C) 3.33 A</td>
<td>9 \Omega</td>
</tr>
<tr>
<td>(D) 6.66 A</td>
<td>2 \Omega</td>
</tr>
</tbody>
</table>

For a network consisting of resistors and independent sources only, it is desired to obtain Thevenin’s or Norton’s equivalent across a load which is in parallel with an ideal voltage sources.

Consider the following statements:
1. Thevenin equivalent circuit across this terminal does not exist.
2. The Thevenin equivalent circuit exists and it is simply that of a voltage source.
3. The Norton equivalent circuit for this terminal does not exist.

Which of the above statements is/are true?

(A) 1 and 3
(B) 1 only
(C) 2 and 3
(D) 3 only

MCQ 5.1.28

For a network consisting of resistors and independent sources only, it is desired to obtain Thevenin’s or Norton’s equivalent across a load which is in series with an ideal current sources.

Consider the following statements

1. Norton equivalent across this terminal is not feasible.
2. Norton equivalent circuit exists and it is simply that of a current source only.
3. Thevenin’s equivalent circuit across this terminal is not feasible.

Which of the above statements is/are correct?

(A) 1 and 3
(B) 2 and 3
(C) 1 only
(D) 3 only

MCQ 5.1.29

The Norton equivalent circuit of the given network with respect to the terminal a-b, is

![Diagram of a circuit with 24 V, 6 Ω, 3 Ω, 2 A, and 3 Ω resistors.]

(A) 2 A
(B) 6 A
(C) 3 A
(D) 6 A

MCQ 5.1.30

In the circuit below, if R_L is fixed and R_s is variable then for what value of R_s power dissipated in R_L will be maximum?

![Diagram of a circuit with V_o, R_s, and R_L.]

(A) $R_s = R_L$
(B) $R_s = 0$
(C) $R_s = R_L/2$
(D) $R_s = 2R_L$
MCQ 5.1.31
In the circuit shown below the maximum power transferred to \(R_L \) is \(P_{\text{max}} \), then

\[
\begin{align*}
24 \text{ V} & \quad 2 \Omega \\
6 \Omega & \quad R_L \\
4 \Omega & \quad 6 \text{ A}
\end{align*}
\]

(A) \(R_L = 12 \Omega, \quad P_{\text{max}} = 12 \text{ W} \)

(B) \(R_L = 3 \Omega, \quad P_{\text{max}} = 96 \text{ W} \)

(C) \(R_L = 3 \Omega, \quad P_{\text{max}} = 48 \text{ W} \)

(D) \(R_L = 12 \Omega, \quad P_{\text{max}} = 24 \text{ W} \)

MCQ 5.1.32
In the circuit shown in figure (A) if current \(I_1 = 2 \text{ A} \), then current \(I_2 \) and \(I_3 \) in figure (B) and figure (C) respectively are

\[
\begin{align*}
12 \text{ V} & \quad R_1 \\
R_2 & \quad R_3 \\
R_4 & \quad 12 \text{ V}
\end{align*}
\]

(A) \(2 \text{ A}, \quad 2 \text{ A} \)

(B) \(-2 \text{ A}, \quad 2 \text{ A} \)

(C) \(2 \text{ A}, \quad -2 \text{ A} \)

(D) \(-2 \text{ A}, \quad -2 \text{ A} \)

MCQ 5.1.33
In the circuit of figure (A), if \(I_1 = 20 \text{ mA} \), then what is the value of current \(I_2 \) in the circuit of figure (B) ?

\[
\begin{align*}
36 \text{ V} & \quad R_1 \\
R_2 & \quad R_3 \\
R_4 & \quad 36 \text{ V}
\end{align*}
\]

(A) \(40 \text{ mA} \)

(B) \(-20 \text{ mA} \)

(C) \(20 \text{ mA} \)

(D) \(R_1, \ R_2 \) and \(R_3 \) must be known
MCQ 5.1.34 If $V_1 = 2\text{ V}$ in the circuit of figure (A), then what is the value of V_2 in the
circuit of figure (B)?

(A) 2 V
(B) –2 V
(C) 4 V
(D) R_1, R_2 and R_3 must be known

MCQ 5.1.35 The value of current I in the circuit below is equal to

(A) 100 mA
(B) 10 mA
(C) 233.34 mA
(D) none of these

MCQ 5.1.36 A simple equivalent circuit of the two-terminal network shown in figure is

(A)
(B)
(C)
(D)

MCQ 5.1.37 If $V = AV_1 + BV_2 + CV_3$ in the following circuit, then values of A, B and C
respectively are

(A) $\frac{1}{3}, \frac{2}{3}, \frac{1}{3}$
(B) $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
(C) $\frac{1}{3}, \frac{1}{3}, \frac{2}{3}$
(D) $\frac{1}{3}, \frac{1}{3}, \frac{100}{3}$
MCQ 5.1.38 For the linear network shown below, \(V - I \) characteristic is also given in the figure. The value of Norton equivalent current and resistance respectively are

\[
\begin{align*}
(A) & & 3 \, \text{A}, \, 2 \, \Omega \\
(B) & & 6 \, \Omega, \, 2 \, \Omega \\
(C) & & 6 \, \text{A}, \, 0.5 \, \Omega \\
(D) & & 3 \, \text{A}, \, 0.5 \, \Omega
\end{align*}
\]

MCQ 5.1.39 In the following circuit a network and its Thevenin and Norton equivalent are given.

The value of the parameter are

\[
\begin{align*}
V_{Th} & & R_{Th} & & I_N & & R_N \\
(A) & & 4 \, \text{V} & & 2 \, \Omega & & 2 \, \text{A} & & 2 \, \Omega \\
(B) & & 4 \, \text{V} & & 2 \, \Omega & & 2 \, \text{A} & & 3 \, \Omega \\
(C) & & 8 \, \text{V} & & 1.2 \, \Omega & & \frac{30}{7} \, \text{A} & & 1.2 \, \Omega \\
(D) & & 8 \, \text{V} & & 5 \, \Omega & & \frac{8}{5} \, \text{A} & & 5 \, \Omega
\end{align*}
\]

MCQ 5.1.40 For the following circuit the value of equivalent Norton current \(I_N \) and resistance \(R_N \) are

\[
\begin{align*}
I_N & & R_N \\
(A) & & 2 \, \text{A}, \, 20 \, \Omega \\
(B) & & 2 \, \text{A}, \, -20 \, \Omega \\
(C) & & 0 \, \text{A}, \, 20 \, \Omega \\
(D) & & 0 \, \text{A}, \, -20 \, \Omega
\end{align*}
\]

MCQ 5.1.41 Consider the following circuits shown below

Fig (A)

Fig (B)
The relation between I_a and I_b is

(A) $I_b = I_a + 6$
(B) $I_b = I_a + 2$
(C) $I_b = 1.5I_a$
(D) $I_b = I_a$

Common Data For Q. 42 and 43:

In the following circuit, some measurements were made at the terminals a, b and given in the table below.

<table>
<thead>
<tr>
<th>R (Ω)</th>
<th>I (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

MCQ 5.1.42

The Thevenin equivalent of the unknown network across terminal $a-b$ is

(A) 3Ω, 14V
(B) 5Ω, 16V
(C) 16Ω, 38V
(D) 10Ω, 26V

MCQ 5.1.43

The value of R that will cause I to be 1A, is

(A) 22Ω
(B) 16Ω
(C) 8Ω
(D) 11Ω

MCQ 5.1.44

In the circuit shown in fig (A) if current $I_1 = 2.5A$ then current I_2 and I_3 in fig (B) and (C) respectively are

(A) 5A, 10A
(B) 5A, -10A
(C) 5A, -10A
(D) -5A, 10A

MCQ 5.1.45

The $V-I$ relation of the unknown element X in the given network is $V = AI + B$. The value of A (in ohm) and B (in volt) respectively are
MCQ 5.1.46

For the following network the V-I curve with respect to terminals a-b, is given by

(A) \(\frac{2}{20} \)
(B) \(2, 8 \)
(C) \(0.5, 4 \)
(D) \(0.5, 16 \)

MCQ 5.1.47

A network \(N \) feeds a resistance \(R \) as shown in circuit below. Let the power consumed by \(R \) be \(P \). If an identical network is added as shown in figure, the power consumed by \(R \) will be

(A) equal to \(P \)
(B) less than \(P \)
(C) between \(P \) and \(4P \)
(D) more than \(4P \)
MCQ 5.1.48 A certain network consists of a large number of ideal linear resistors, one of which is R and two constant ideal source. The power consumed by R is P_1 when only the first source is active, and P_2 when only the second source is active. If both sources are active simultaneously, then the power consumed by R is

(A) $P_1 \pm P_2$
(B) $\sqrt{P_1} \pm \sqrt{P_2}$
(C) $(\sqrt{P_1} \pm \sqrt{P_2})^2$
(D) $(P_1 \pm P_2)^2$

MCQ 5.1.49 If the 60 Ω resistance in the circuit of figure (A) is to be replaced with a current source I_s and 240 Ω shunt resistor as shown in figure (B), then magnitude and direction of required current source would be

(A) 200 mA, upward
(B) 150 mA, downward
(C) 50 mA, downward
(D) 150 mA, upward

MCQ 5.1.50 The Thevenin's equivalent of the circuit shown in the figure is

(A) 4 V, 48 Ω
(B) 24 V, 12 Ω
(C) 24 V, 24 Ω
(D) 12 V, 12 Ω

MCQ 5.1.51 The voltage V_L across the load resistance in the figure is given by

$$V_L = V \left(\frac{R_L}{R + R_L} \right)$$

V and R will be equal to

(A) $-10 V, 2 \Omega$
(B) $10 V, 2 \Omega$
(C) $-10 V, -2 \Omega$
(D) none of these
MCQ 5.1.52 In the circuit given below, viewed from a-b, the circuit can be reduced to an equivalent circuit as

\[2 \, \text{k} \Omega \quad 2000I_x \quad a \]
\[2 \, \text{k} \Omega \quad 4 \, \text{k} \Omega \quad 4 \, \text{k} \Omega \quad b \]
\[I_x \]

(A) 10 volt source in series with 2 k\(\Omega \) resistor
(B) 1250 \(\Omega \) resistor only
(C) 20 V source in series with 1333.34 \(\Omega \) resistor
(D) 800 \(\Omega \) resistor only

MCQ 5.1.53 The \(V-I \) equation for the network shown in figure, is given by

\[V = 100I + 36 \]

(A) \(7V = 200I + 54 \) \quad (B) \(V = 100I + 36 \)
(C) \(V = 200I + 54 \) \quad (D) \(V = 50I + 54 \)

MCQ 5.1.54 In the following circuit the value of open circuit voltage and Thevenin resistance at terminals a,b are

\[3I_x \quad 600 \, \text{\Omega} \quad a \]
\[150 \, \text{\Omega} \quad 300 \, \text{\Omega} \quad V_x \quad b \]
\[900 \, \text{\Omega} \quad I_x \]

(A) \(V_{oc} = 100 \, \text{V}, \, R_{Th} = 1800 \, \Omega \)
(B) \(V_{oc} = 0 \, \text{V}, \, R_{Th} = 270 \, \Omega \)
(C) \(V_{oc} = 100 \, \text{V}, \, R_{Th} = 90 \, \Omega \)
(D) \(V_{oc} = 0 \, \text{V}, \, R_{Th} = 90 \, \Omega \)

EXERCISE 5.2

QUES 5.2.1 In the given network, if $V_5 = V_0$, $I = 1 \text{ A}$. If $V_5 = 2V_0$ then what is the value of I_1 (in Amp)?

![Network Diagram](image)

QUES 5.2.2 In the given network, if $I_3 = I_0$ then $V = 1 \text{ volt}$. What is the value of I_1 (in Amp) if $I_3 = 2I_0$?

![Network Diagram](image)

QUES 5.2.3 In the circuit below, the voltage V across the 40Ω resistor would be equal to ____ Volts.

![Network Diagram](image)

QUES 5.2.4 The value of current I flowing through 2Ω resistance in the given circuit, equals to ____ Amp.

![Network Diagram](image)

QUES 5.2.5 In the given circuit, the value of current I will be ____ Amps.

![Network Diagram](image)

QUES 5.2.6 What is the value of current I in the given network (in Amp)?

![Network Diagram](image)
QUES 5.2.7 In the given network if \(V_1 = V_2 = 0 \), then what is the value of \(V_o \) (in volts)?

QUES 5.2.8 What is the value of current \(I \) in the circuit shown below (in Amp)?

QUES 5.2.9 How much power is being dissipated by the 4 k\(\Omega \) resistor in the network (in mW)?

QUES 5.2.10 Thevenin equivalent resistance \(R_{Th} \) between the nodes a and b in the following circuit is _ _ _ _ \(\Omega \).

Common Data For Q. 11 and 12:
Consider the circuit shown in the figure.
QUES 5.2.11 The equivalent Thevenin voltage across terminal a-b is __ Volt.

QUES 5.2.12 The Norton equivalent current with respect to terminal a-b is ____ Amps.

QUES 5.2.13 In the circuit given below, what is the value of current I (in Amp) through 6Ω resistor?

QUES 5.2.14 For the circuit below, what value of R will cause I = 3A (in Ω)?

QUES 5.2.15 The maximum power that can be transferred to the resistance R in the circuit is ____ mili watts.

QUES 5.2.16 The value of current I in the following circuit is equal to ____ Amp.

QUES 5.2.17 For the following circuit the value of R_{Th} is ____ Ω.
QUES 5.2.18 What is the value of current I in the given network (in Amp) ?

$$
\begin{array}{c}
\text{6} \Omega \\
2 \text{A} \\
\text{5 V} \\
\end{array}
\begin{array}{c}
\text{6} \Omega \\
\end{array}
R_{TH}
$$

QUES 5.2.19 The value of current I in the figure is _ _ _ mA.

$$
\begin{array}{c}
\text{2 A} \\
\text{3} \Omega \\
\text{4} \Omega \\
\text{8} \Omega \\
I
\end{array}
\begin{array}{c}
\text{6} \Omega \\
\text{6 k}\Omega \\
\text{6 k}\Omega \\
\text{6 k}\Omega \\
\end{array}
$$

QUES 5.2.20 For the circuit of figure, some measurements were made at the terminals a-b and given in the table below.

<table>
<thead>
<tr>
<th>R_L (Ω)</th>
<th>I_L (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

What is the value of I_L (in Amps) for $R_L = 20 \Omega$?

QUES 5.2.21 In the circuit below, for what value of k, load $R_L = 2 \Omega$ absorbs maximum power ?

$$
\begin{array}{c}
k \text{V} \\
2 \Omega \\
2 \text{A} \\
\end{array}
\begin{array}{c}
V_L \\
4 \Omega \\
\end{array}
R_L
$$

QUES 5.2.22 In the circuit shown below, the maximum power that can be delivered to the load R_L is equal to _ _ _ mW.

$$
\begin{array}{c}
1 \text{k}\Omega \\
18 \text{V} \\
6 \text{mA} \\
2 \text{k}\Omega \\
1 \text{k}\Omega \\
R_L
\end{array}
\begin{array}{c}
1 \text{k}\Omega \\
\end{array}
1 \text{k}\Omega
$$

QUES 5.2.23 A practical DC current source provide 20 kW to a 50 Ω load and 20 kW to a 200 Ω load. The maximum power, that can drawn from it, is _ _ _ kW.

Buy Online: shop.nodia.co.in

Shipping Free

Maximum Discount
QUES 5.2.24 In the following circuit the value of voltage V_1 is ____ Volts.

QUES 5.2.25 If $I = 5 \text{A}$ in the circuit below, then what is the value of voltage source V_s (in volts)?

QUES 5.2.26 For the following circuit, what is the value of current I_b (in Amp) ?

QUES 5.2.27 The Thevenin equivalent resistance between terminal a and b in the following circuit is ____ Ohm.

QUES 5.2.28 In the circuit shown below, what is the value of current I (in Amps) ?

QUES 5.2.29 The power delivered by 12 V source in the given network is ____ watts.
QUES 5.2.30 In the circuit shown, what value of R_L (in Ω) maximizes the power delivered to R_L?

[Diagram of a circuit with a 20 V source, 2 kΩ, 1 kΩ, and R_L in series and parallel connections.]

QUES 5.2.31 The $V-I$ relation for the circuit below is plotted in the figure. The maximum power that can be transferred to the load R_L will be ______ mW

[Graph showing a linear network with V and R_L.]

QUES 5.2.32 In the following circuit, the equivalent Thevenin resistance between nodes a and b is $R_{Th} = 3\Omega$. The value of α is ______

[Diagram of a circuit with nodes a and b, and a 1Ω resistor connected at a and b.]

QUES 5.2.33 The maximum power that can be transferred to the load resistor R_L from the current source in the figure is ______ watts.

[Diagram of a complex circuit with a 40 A current source, 16Ω, 40Ω, 20Ω, 240Ω, and 100Ω.]

Common Data For Q. 34 and 35

An electric circuit is fed by two independent sources as shown in figure.

[Diagram of a circuit with 36 V, 6Ω, 4Ω, 1Ω, 3Ω, 6Ω, 2Ω, and 27 A sources.]

QUES 5.2.34 The power supplied by 36 V source will be ______ watts.

QUES 5.2.35 The power supplied by 27 A source will be ______ watts.
QUES 5.2.36 In the circuit shown in the figure, what is the power dissipated in 4Ω resistor (in watts)?

```
12 V

8 Ω

5 Ω

4 A

4 Ω

18 V

10 Ω
```

QUES 5.2.37 What is the value of voltage V in the following network (in volts)?

```
2I_x

24 V

1 Ω

1 Ω

4 A
```

QUES 5.2.38 For the circuit shown in the figure below, the value of \(R_{Th} \) is _ _ _ Ω.

```
-2I_x

0.01V_x

100 Ω

100 Ω

300 Ω

V_x

800 Ω
```

QUES 5.2.39 Consider the network shown below:

```
Linear Network

\( R_L \)

\( V_{sh} \)
```

The power absorbed by load resistance \(R_L \) is shown in table:

<table>
<thead>
<tr>
<th>(R_L)</th>
<th>10 kΩ</th>
<th>30 kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>3.6 mW</td>
<td>4.8 mW</td>
</tr>
</tbody>
</table>

The value of \(R_L \) (in kΩ), that would absorb maximum power, is _ _ _
SOL 5.1

SOL 5.1.1 Option (B) is correct.

For, \(V_s = 10 \text{ V}, P = 40 \text{ W} \)
So, \(I_s = \frac{P}{V_s} = \frac{40}{10} = 4 \text{ A} \)
Now, \(V_s' = 5 \text{ V}, \text{ so } I_s' = 2 \text{ A} \)
(From linearity)
New value of the power supplied by source is \(P_s' = V_s'I_s' = 5 \times 2 = 10 \text{ W} \)

Note: Linearity does not apply to power calculations.

SOL 5.1.2 Option (C) is correct.

From linearity, we know that in the circuit \(\frac{V_s}{I_s} \) ratio remains constant
\[
\frac{V_s}{I_s} = \frac{20}{200 \times 10^{-3}} = 100
\]
Let current through load is \(I_L' \) when the power absorbed is 2.5 W, so
\[
P_L = (I_L')^2 R_L
\]
\[
2.5 = (I_L')^2 \times 10
\]
\[
I_L' = 0.5 \text{ A}
\]
\[
\frac{V_s}{I_s} = \frac{V_s'}{I_L'} = 100
\]
So, \(V_s' = 100I_L' = 100 \times 0.5 = 50 \text{ V} \)
Thus required values are \(I_L' = 0.5 \text{ A}, V_s' = 50 \text{ V} \)

SOL 5.1.3 Option (D) is correct.

From linearity,
\[
I_L = AV_s + BI_s, \quad A \text{ and } B \text{ are constants}
\]
From the table
\[
2 = 14A + 6B \quad ...(1)
6 = 18A + 2B \quad ...(2)
\]
Solving equation (1) & (2)
\[
A = 0.4, \quad B = -0.6
\]
So, \(I_L = 0.4V_s - 0.6I_s \)

SOL 5.1.4 Option (B) is correct.

The circuit has 3 independent sources, so we apply superposition theorem to obtain the voltage drop.

Due to 16 V source only: (Open circuit 5 A source and Short circuit 32 V source)
Let voltage across R_2 due to 16 V source only is V_1.

Using voltage division

$$V_1 = \frac{8}{24 + 8}(16)$$

$$= -4 \text{ V}$$

Due to 5A source only: (Short circuit both the 16 V and 32 V sources)
Let voltage across R_2 due to 5A source only is V_2.

$$V_2 = \frac{24 \Omega || 16 \Omega || 16 \Omega}{24 \Omega + 16 \Omega + 16 \Omega} \times 5$$

$$= 6 \times 5 = 30 \text{ volt}$$

Due to 32 V source only: (Short circuit 16 V source and open circuit 5 A source)
Let voltage across R_2 due to 32 V source only is V_3.

Using voltage division

$$V_3 = \frac{9.6}{16 + 9.6}(32) = 12 \text{ V}$$

By superposition, the net voltage across R_2 is

$$V = V_1 + V_2 + V_3 = -4 + 30 + 12 = 38 \text{ volt}$$

ALTERNATIVE METHOD:
The problem may be solved by applying a node equation at the top node.

Option (C) is correct.

Due to 60 A Source Only: (Open circuit 30 A and short circuit 30 V sources)
Using current division

\[I_a = \frac{2}{2 + 8}(60) = 12 \text{ A} \]

Again, \(I_a \) will be distributed between parallel combination of 12 \(\Omega \) and 6 \(\Omega \)

\[I_1 = \frac{6}{12 + 6}(12) = 4 \text{ A} \]

Due to 30 A source only: (Open circuit 60 A and short circuit 30 V sources)

Using current division

\[I_b = \frac{4}{4 + 6}(30) = 12 \text{ A} \]

\(I_b \) will be distributed between parallel combination of 12 \(\Omega \) and 6 \(\Omega \)

\[I_2 = \frac{6}{12 + 6}(12) = 4 \text{ A} \]

Due to 30 V Source Only: (Open circuit 60 A and 30 A sources)

Using source transformation

Using current division

\[I_3 = -\frac{3}{12 + 3}(5) = -1 \text{ A} \]

SOL 5.1.6

Option (C) is correct.

Using superposition, \(I = I_1 + I_2 \)

Let \(I_1 \) is the current due to 9 A source only. (i.e. short 18 V source)

\[I_1 = \frac{6}{6 + 12}(9) = 3 \text{ A} \]

(current division)

Let \(I_2 \) is the current due to 18 V source only (i.e. open 9 A source)

\[I_2 = \frac{18}{6 + 12} = 1 \text{ A} \]
So, \[I_1 = 3\,A, \quad I_2 = 1\,A \]

SOL 5.1.7
Option (B) is correct.
From superposition theorem, it is known that if all source values are doubled, then node voltages also be doubled.

SOL 5.1.8
Option (A) is correct.
From the principal of superposition, doubling the values of voltage source doubles the mesh currents.

SOL 5.1.9
Option (C) is correct.
Using source transformation, we can obtain \(I \) in following steps.

ALTERNATIVE METHOD:
Try to solve the problem by obtaining Thevenin equivalent for right half of the circuit.

SOL 5.1.10
Option (D) is correct.
Using source transformation of 4 A and 6 V source.

Adding parallel current sources
Source transformation of 5 \text{A} source

Applying KVL around the anticlockwise direction

\[-5 - I + 8 - 2I - 12 = 0 \]
\[-9 - 3I = 0 \]
\[I = -3 \text{A} \]

Power absorbed by 12 V source

\[P_{12V} = 12 \times I \]
\[= 12 \times -3 = -36 \text{W} \]

or, 12 V source supplies 36 W power.

SOL 5.1.11
Option (B) is correct.
We know that source transformation also exists for dependent source, so

Current source values

\[I_s = \frac{6I_x}{2} = 3I_x \text{ (downward)} \]
\[R_s = 2 \Omega \]

SOL 5.1.12
Option (C) is correct.
We know that source transformation is applicable to dependent source also.
Values of equivalent voltage source

\[V_s = (4I_s)(5) = 20I_x \]
\[R_s = 5 \Omega \]

SOL 5.1.13
Option (C) is correct.
Combining the parallel resistance and adding the parallel connected current sources.

\[9 \text{A} - 3 \text{A} = 6 \text{A} \text{ (upward)} \]
\[3 \Omega || 6 \Omega = 2 \Omega \]
SOL 5.1.14

Option (D) is correct.

Thevenin Voltage: (Open Circuit Voltage)

The open circuit voltage between a-b can be obtained as

\[
\begin{align*}
V_{ab} & = 10 + 24V_{Th} = 14 \text{ volt}
\end{align*}
\]

Thevenin Resistance:
To obtain Thevenin’s resistance, we set all independent sources to zero i.e., short circuit all the voltage sources and open circuit all the current sources.

\[
R_{Th} = 24 \Omega
\]

SOL 5.1.15

Option (B) is correct.

Thevenin Voltage:

Using voltage division

\[
V_1 = \frac{20}{20 + 30} (10) = 4 \text{ volt}
\]

and,

\[
V_2 = \frac{15}{15 + 10} (10) = 6 \text{ volt}
\]

Applying KVL,

\[
V_1 - V_2 + V_{ab} = 0
\]

\[
4 - 6 + V_{ab} = 0
\]

\[
V_{ab} = 2 \text{ volt}
\]
Thevenin Resistance:

\[V_{Th} = V_{ab} = -2 \text{ volt} \]

\[R_{Th} = 18 \Omega \]

\[R_{ab} = \frac{20 \Omega \parallel 30 \Omega + 15 \Omega \parallel 10 \Omega}{12 \Omega + 6 \Omega} = 18 \Omega \]

\[R_{Th} = R_{ab} = 18 \Omega \]

SOL 5.1.16 Option (A) is a correct.

Using source transformation of 24 V source

SOL 5.1.17 Option (A) is correct.

Thevenin Voltage: (Open Circuit Voltage)

\[V_{Th} = 4 \text{ V}, R_{Th} = 6 \Omega \]
Thevenin Resistance:

\[V_{Th} = \frac{6}{6 + 4}(-40) = -24 \text{ volt} \] (using voltage division)

\[R_{Th} = \frac{6}{2.4} = 2.4 \Omega \]

SOL 5.1.18

Option (B) is correct.

For the circuit of figure (A)

\[V_{Th} = V_a - V_b \]

\[V_a = 24 \text{ V} \]

\[V_b = \frac{6}{6 + 3}(-6) = -4 \text{ V} \] (Voltage division)

\[V_{Th} = 24 - (-4) = 28 \text{ V} \]

For the circuit of figure (B), using source transformation

Combining parallel resistances,

\[12 \Omega || 4 \Omega = 3 \Omega \]

Adding parallel current sources,

\[8 - 4 = 4 \text{ A} \] (downward)

\[V_{Th} = -12 \text{ V} \]

SOL 5.1.19

Option (C) is correct.

For the circuit for fig (A)
Page 254
Chap 5
Circuit Theorems

\[R_{Th} = R_{ab} = 6 \Omega \parallel 3 \Omega = 2 \Omega \]

For the circuit of fig (B), as obtained in previous solution.

SOL 5.1.20
Option (B) is correct.

SOL 5.1.21
Option (C) is correct.
The network consists of resistor and dependent sources because if it has independent source then there will be an open circuit Thevenin voltage present.

SOL 5.1.22
Option (D) is correct.
Thevenin Voltage (Open Circuit Voltage):

Applying KCL at top middle node

\[
\frac{V_{Th}}{3} - \frac{2V_x}{3} + \frac{V_{Th}}{6} + 1 = 0
\]

\[
\frac{V_{Th}}{3} - \frac{2V_{Th}}{6} + \frac{V_{Th}}{6} + 1 = 0 \quad (V_{Th} = V_x)
\]

\[-2V_{Th} + V_{Th} + 6 = 0
\]

\[V_{Th} = 6 \text{ volt}
\]

Thevenin Resistance:

\[R_{Th} = \frac{\text{Open circuit voltage}}{\text{Short circuit current}} = \frac{V_{Th}}{I_{sc}} \]

To obtain Thevenin resistance, first we find short circuit current through a-b
Writing KCL at top middle node
\[\frac{V_x - 2V_x}{3} + \frac{V_x}{6} + 1 + \frac{V_x - 0}{3} = 0 \]
\[-2V_x + V_x + 6 + 2V_x = 0 \text{ or } V_x = -6 \text{ volt} \]
\[I_{sc} = \frac{V_x - 0}{3} = -\frac{6}{3} = -2 \text{ A} \]

Thevenin's resistance,
\[R_{Th} = \frac{V_{Th}}{I_{sc}} = -\frac{6}{2} = -3 \Omega \]

ALTERNATIVE METHOD:
Since dependent source is present in the circuit, we put a test source across a-b to obtain Thevenin’s equivalent.

By applying KCL at top middle node
\[\frac{V_x - 2V_x}{3} + \frac{V_x}{6} + 1 + \frac{V_x - V_{test}}{3} = 0 \]
\[-2V_x + V_x + 6 + 2V_x - 2V_{test} = 0 \]
\[2V_{test} - V_x = 6 \]
\[...(1) \]

We have
\[I_{test} = \frac{V_{test} - V_x}{3} \]
\[3I_{test} = V_{test} - V_x \]
\[V_x = V_{test} - 3I_{test} \]

Put \(V_x \) into equation (1)
\[2V_{test} - (V_{test} - 3I_{test}) = 6 \]
\[2V_{test} - V_{test} + 3I_{test} = 6 \]
\[V_{test} = 6 - 3I_{test} \]
\[...(2) \]

For Thevenin’s equivalent circuit
\[\frac{V_{test} - V_{Th}}{R_{Th}} = I_{test} \]
\[V_{test} = V_{Th} + R_{Th}I_{test} \]
\[...(3) \]

Comparing equation (2) and (3)
\[V_{Th} = 6 \text{ V}, R_{Th} = -3 \Omega \]
Option (D) is correct.

Using voltage division

\[V = V_{Th} \left(\frac{R}{R + R_{Th}} \right) \]

From the table,

\[6 = V_{Th} \left(\frac{3}{3 + R_{Th}} \right) \] \(\text{...(1)} \)
\[8 = V_{Th} \left(\frac{8}{8 + R_{Th}} \right) \] \(\text{...(2)} \)

Dividing equation (1) and (2), we get

\[\frac{6}{8} = \frac{3(8 + R_{Th})}{8(3 + R_{Th})} \]

\[6 + 2R_{Th} = 8 + R_{Th} \]

\[R_{Th} = 2 \Omega \]

Substituting \(R_{Th} \) into equation (1)

\[6 = V_{Th} \left(\frac{3}{3 + 2} \right) \text{ or } V_{Th} = 10 \text{ V} \]

Option (C) is correct.

Norton Current : (Short Circuit Current)

The Norton equivalent current is equal to the short-circuit current that would flow when the load replaced by a short circuit as shown below

Applying KCL at node a

\[I_N + I_1 + 2 = 0 \]

Since

\[I_1 = \frac{0 - 20}{24} = -\frac{5}{6} \text{ A} \]

So,

\[I_N - \frac{5}{6} + 2 = 0 \]

\[I_N = -\frac{7}{6} \text{ A} \]

Norton Resistance :

Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) to obtain Norton’s equivalent resistance \(R_N \).

\[R_N = 24 \Omega \]
SOL 5.1.25
Option (C) is correct.

Using source transformation of 1A source

Again, source transformation of 2V source

Adding parallel current sources

ALTERNATIVE METHOD:
Try to solve the problem using superposition method.

SOL 5.1.26
Option (C) is correct.

Short circuit current across terminal a-b is

For simplicity circuit can be redrawn as

\[I_N = \frac{3}{3+6} (10) \]

\[= 3.33 \text{ A} \]

Norton’s equivalent resistance

\[R_N = 6 + 3 = 9 \Omega \]
SOL 5.1.27 Option (C) is correct.

The voltage across load terminal is simply V_s and it is independent of any other current or voltage. So, Thevenin equivalent is $V_{th} = V_s$ and $R_{th} = 0$ (Voltage source is ideal).

Norton equivalent does not exist because of parallel connected voltage source.

SOL 5.1.28 Option (B) is correct.

The output current from the network is equal to the series connected current source only, so $I_{in} = I_s$. Thus, effect of all other component in the network does not change I_{in}.

In this case Thevenin's equivalent is not feasible because of the series connected current source.

SOL 5.1.29 Option (C) is correct.

Norton Current : (Short Circuit Current)

Using source transformation

Nodal equation at top center node

$\frac{0 - 24}{6} + \frac{0 - (-6)}{3} + I_n = 0$

$-4 + 1 + I_n = 0$

$I_n = 3$ A
So, Norton equivalent will be

\[R_N = R_{ab} = 6 \parallel (3 + 3) = 6 \parallel 6 = 3 \Omega \]

So, Norton equivalent will be

\[3 \text{ A} \]
\[3 \Omega \]

Option (B) is correct.

\[V_s \left(\frac{R_L}{R_s + R_L} \right) \]

Power absorbed by \(R_L \)

\[P_L = \frac{(V)^2}{R_L} = \frac{V_s^2 R_L}{(R_s + R_L)^2} \]

From above expression, it is known that power is maximum when \(R_s = 0 \)

NOTE:

Do not get confused with maximum power transfer theorem. According to maximum power transfer theorem if \(R_L \) is variable and \(R_s \) is fixed then power dissipated by \(R_L \) is maximum when \(R_L = R_s \).

Option (C) is correct.

We solve this problem using maximum power transfer theorem. First, obtain Thevenin equivalent across \(R_L \).

Thevenin Voltage: (Open circuit voltage)

\[V_{th} = 4 \text{ V} \]

Using source transformation

\[24 \text{ V} \]
\[6 \Omega \]
\[2 \Omega \]
\[4 \Omega \]

Using nodal analysis

\[\frac{V_{th} - 24}{6} + \frac{V_{th} - 24}{2 + 4} = 0 \]

\[2V_{th} - 48 = 0 \Rightarrow V_{th} = 24 \text{ V} \]

Thevenin Resistance:

\[\frac{6 \Omega}{2 \text{ A}} \]
\[4 \Omega \]
Circuit becomes as

For maximum power transfer

\[R_L = R_{Th} = 3 \Omega \]

Value of maximum power

\[P_{max} = \frac{(V_{Th})^2}{4R_L} = \frac{(24)^2}{4 \times 3} = 48 \text{ W} \]

SOL 5.1.32 Option (D) is correct.

This can be solved by reciprocity theorem. But we have to take care that the polarity of voltage source have the same correspondence with branch current in each of the circuit.

In figure (B) and figure (C), polarity of voltage source is reversed with respect to direction of branch current so

\[I_1 = I_2 = -2 \text{ A} \]

SOL 5.1.33 Option (C) is correct.

According to reciprocity theorem in any linear bilateral network when a single voltage source \(V_a \) in branch \(a \) produces a current \(I_b \) in branches \(b \), then if the voltage source \(V_a \) is removed (i.e. branch \(a \) is short circuited) and inserted in branch \(b \), then it will produce a current \(I_b \) in branch \(a \).

So,

\[I_2 = I_1 = 20 \text{ mA} \]

SOL 5.1.34 Option (A) is correct.

According to reciprocity theorem in any linear bilateral network when a single current source \(I_a \) in branch \(a \) produces a voltage \(V_b \) in branches \(b \), then if the current source \(I_a \) is removed (i.e. branch \(a \) is open circuited) and inserted in branch \(b \), then it will produce a voltage \(V_b \) in branch \(a \).

So,

\[V_2 = 2 \text{ volt} \]

SOL 5.1.35 Option (A) is correct.

We use Millman’s theorem to obtain equivalent resistance and voltage across a-b.

\[V_{ab} = \frac{-96}{240} + \frac{40}{200} + \frac{-80}{800} = -\frac{144}{5} = -28.8 \text{ V} \]

The equivalent resistance

\[R_{ab} = \frac{1}{\frac{1}{240} + \frac{1}{200} + \frac{1}{800}} = 96 \Omega \]
Now, the circuit is reduced as

\[I = \frac{28.8}{96 + 192} = 100 \text{ mA} \]

SOL 5.1.36
Option (B) is correct.

Thevenin Voltage (Open circuit voltage):
The open circuit voltage will be equal to \(V \), i.e. \(V_{Th} = V \)

Thevenin Resistance:
Set all independent sources to zero i.e. open circuit the current source and short circuit the voltage source as shown in figure

Open circuit voltage = \(V \)

SOL 5.1.37
Option (B) is correct.

\(V \) is obtained using super position.

Due to source \(V_1 \) only : (Open circuit source \(I_3 \) and short circuit source \(V_2 \))

\[V = \frac{50}{100 + 50}(V_1) = \frac{1}{3}V_1 \] (using voltage division)

So,
\[A = \frac{1}{3} \]

Due to source \(V_2 \) only : (Open circuit source \(I_3 \) and short circuit source \(V_1 \))

\[V = \frac{50}{100 + 50}(V_2) = \frac{1}{3}V_2 \] (Using voltage division)

So,
\[B = \frac{1}{3} \]

Due to source \(I_3 \) only : (short circuit sources \(V_1 \) and \(V_2 \))
So,
\[C = \frac{100}{3} \]

ALTERNATIVE METHOD:
Try to solve by nodal method, taking a supernode corresponding to voltage source \(V_2 \).

SOL 5.1.38
Option (C) is correct.

The circuit with Norton equivalent

\[V = I_3(100 || 100 || 100) = I_3 \left(\frac{100}{3} \right) \]

So,
\[C = \frac{100}{3} \]

SOL 5.1.39
Option (D) is correct.

Thevenin voltage: (Open circuit voltage)
\[V_{Th} = 4 + (2 \times 2) = 4 + 4 = 8 \text{ V} \]

Thevenin Resistance:
\[R_{Th} = 2 + 3 = 5 \Omega = R_N \]

Norton Current:
\[I_N = \frac{V_{Th}}{R_{Th}} = \frac{8}{5} \text{ A} \]

SOL 5.1.40
Option (C) is correct.

Norton current, \(I_N = 0 \) because there is no independent source present in the circuit.
To obtain Norton resistance we put a 1 A test source across the load terminal as shown in figure.
Norton or Thevenin resistance

\[R_N = \frac{V_{\text{test}}}{I_1} \]

Writing KVL in the left mesh

\[20I_1 + 10(1 - I_1) - 30I_1 = 0 \]
\[20I_1 - 10I_1 - 30I_1 + 10 = 0 \]

\[I_1 = 0.5 \text{ A} \]

Writing KVL in the right mesh

\[V_{\text{test}} - 5(1) - 30I_1 = 0 \]
\[V_{\text{test}} - 5 - 30(0.5) = 0 \]
\[V_{\text{test}} - 5 - 15 = 0 \]

\[R_N = \frac{V_{\text{test}}}{I_1} = 20 \Omega \]

SOL 5.1.41

Option (C) is correct.
In circuit (b) transforming the 3 A source in to 18 V source all source are 1.5 times of that in circuit (a) as shown in figure.

Using principal of linearity, \(I_b = 1.5I_a \)

SOL 5.1.42

Option (B) is correct.

\[I = \frac{V_{\text{Th}}}{R + R_{\text{Th}}} \]

From the table,

\[2 = \frac{V_{\text{Th}}}{3 + R_{\text{Th}}} \]
\[1.6 = \frac{V_{\text{Th}}}{5 + R_{\text{Th}}} \]

Dividing equation (1) and (2), we get

\[\frac{2}{1.6} = \frac{5 + R_{\text{Th}}}{3 + R_{\text{Th}}} \]
\[6 + 2R_{\text{Th}} = 8 + 1.6R_{\text{Th}} \]
\[0.4R_{\text{Th}} = 2 \]
Substituting \(R_{Th} \) into equation (1)

\[
2 = \frac{V_{Th}}{3+5} \\
V_{Th} = 2(8) = 16 \text{ V}
\]

SOL 5.1.43

Option (D) is correct.

We have,

\[
I = \frac{V_{Th}}{R_{Th} + R} \\
V_{Th} = 16 \text{ V, } R_{Th} = 5 \Omega \\
I = \frac{16}{5 + R} = 1 \\
16 = 5 + R \\
R = 11 \Omega
\]

SOL 5.1.44

Option (B) is correct.

It can be solved by reciprocity theorem. Polarity of voltage source should have same correspondence with branch current in each of the circuit. Polarity of voltage source and current direction are shown below

\[
V_1 = \frac{10}{2.5} = 4 \text{ V} \\
I_2 = -5 \text{ A} \\
I_3 = 10 \text{ A}
\]

SOL 5.1.45

Option (A) is correct.

To obtain \(V - I \) equation we find the Thevenin equivalent across the terminal at which \(X \) is connected.

Thevenin Voltage : (Open Circuit Voltage)

\[
V_1 = 6 \times 1 = 6 \text{ V} \\
12 + V_1 - V_3 = 0 \quad (\text{KVL in outer mesh}) \\
V_3 = 12 + 6 = 18 \text{ V} \\
V_{Th} - V_2 - V_3 = 0 \\
V_{Th} = V_2 + V_3 \\
(V_2 = 2 \times 1 = 2 \text{ V}) \\
V_{Th} = 2 + 18 = 20 \text{ V}
\]
Thevenin Resistance:

\[
R_{Th} = 1 + 1 = 2 \Omega
\]

Now, the circuit becomes as

\[
I = \frac{V - V_{Th}}{R_{Th}}
\]

\[
V = R_{Th}I + V_{Th}
\]

so

\[
A = R_{Th} = 2 \Omega
\]

\[
B = V_{Th} = 20 V
\]

ALTERNATIVE METHOD:

In the mesh ABCDEA, we have KVL equation as

\[
V - 1(I + 2) - 1(I + 6) - 12 = 0
\]

\[
V = 2I + 20
\]

So,

\[
A = 2, \quad B = 2
\]

SOL 5.1.46

Option (A) is correct.

To obtain \(V-I \) relation, we obtain either Norton equivalent or Thevenin equivalent across terminal a-b.

Norton Current (short circuit current):

Applying nodal analysis at center node

\[
I_N + 2 = \frac{24}{4} \quad \text{or} \quad I_N = 6 - 2 = 4 A
\]
Norton Resistance:

\[R_N = 4 \Omega \]

Now, the circuit becomes as

\[I_N = \frac{V}{R_N} + I \]

\[4 = \frac{V}{4} + I \]

or

\[16 = V + 4I \]
\[V = -4I + 16 \]

ALTERNATIVE METHOD:

Solve by writing nodal equation at the center node.

SOL 5.1.47

Option (C) is correct.

Let Thevenin equivalent of both networks are as shown below.

SOL 5.1.48

Option (C) is correct.

\[I_1 = \sqrt{\frac{P_1}{R}} \]
\[I_2 = \sqrt{\frac{P_2}{R}} \]

Using superposition

\[I = I_1 + I_2 = \sqrt{\frac{P_1}{R}} + \sqrt{\frac{P_2}{R}} \]

\[I^2R = (\sqrt{\frac{P_1}{R}} + \sqrt{\frac{P_2}{R}})^2 \]
Option (B) is correct.
From the substitution theorem we know that any branch within a circuit can be replaced by an equivalent branch provided that replacement branch has the same current through it and voltage across it as the original branch. The voltage across the branch in the original circuit

\[V = \frac{40 || 60}{(40 || 60) + 16}(20) = \frac{24}{40} \times 20 = 12 \text{ V} \]

Current entering terminal a-b is

\[I = \frac{V}{R} = \frac{12}{60} = 200 \text{ mA} \]

In fig(B), to maintain same voltage \(V = 12 \text{ V} \) current through 240 \(\Omega \) resistor must be

\[I_R = \frac{12}{240} = 50 \text{ mA} \]

Using KCL at terminal a, as shown

\[I = I_R + I_s \\
200 = 50 + I_s \]

\[I_s = 150 \text{ mA, down wards} \]

Option (B) is correct.

Thevenin voltage: (Open Circuit Voltage)

In the given problem, we use mesh analysis method to obtain Thevenin voltage

\[I_3 = 0 \quad \text{(a-b is open circuit)} \]

Writing mesh equations

Mesh 1:

\[36 - 12(1_1 - 1_2) - 6(1_1 - 1_3) = 0 \]
\[36 - 12l_1 + 12l_2 - 6l_1 = 0 \quad \text{(I_3 = 0)} \]
\[3l_1 - 2l_2 = 6 \quad \text{...}(1) \]

Mesh 2:

\[-24l_2 - 20(l_2 - l_3) - 12(l_2 - l_3) = 0 \]
From equation (1) and (2)

\[I_1 = \frac{7}{3} \text{ A}, \quad I_2 = \frac{1}{2} \text{ A} \]

Mesh 3:

\[-6(I_3 - I_2) - 20(I_3 - I_2) - V_{Th} = 0 \]
\[-6\left(0 - \frac{7}{3}\right) - 20\left(0 - \frac{1}{2}\right) - V_{Th} = 0 \]
\[14 + 10 = V_{Th} \]
\[V_{Th} = 24 \text{ volt} \]

Thevenin Resistance:

\[R_{Th} = (20 + 4) || 24 = 24 \Omega || 24 = 12 \Omega \]

ALTERNATIVE METHOD:

\[V_{Th} \] can be obtained by writing nodal equation at node \(a \) and at center node.

Option (C) is correct.

We obtain Thevenin’s equivalent across load terminal.

Thevenin Voltage: (Open Circuit Voltage)

\[5 I_x = I_x + 0 \quad \text{or} \quad I_x = 5 \text{ A} \]

Using KVL

\[2I_x - 4I_x - V_{Th} = 0 \]
\[2(5) - 4(5) = V_{Th} \quad \text{or} \quad V_{Th} = -10 \text{ volt} \]

Thevenin Resistance:

First we find short circuit current through \(a-b \)
Using KCL at top left node
\[5 = I_x + I_{sc} \]
\[I_x = 5 - I_{sc} \]

Applying KVL in the right mesh
\[2I_x - 4I_x + 0 = 0 \text{ or } I_x = 0 \]
\[5 - I_{sc} = 0 \text{ or } I_{sc} = 5 \text{ A} \]

Thevenin resistance,
\[R_{Th} = \frac{V_{Th}}{I_{sc}} = \frac{-10}{5} = -2 \Omega \]

Now, the circuit becomes as
\[
\begin{align*}
V & = V_{Th}\left(\frac{R}{R + R_{L}}\right) \quad \text{(Using voltage division)} \\
\text{So,} \quad V &= V_{Th} = -10 \text{ volt} \\
R &= R_{Th} = -2 \Omega
\end{align*}
\]

SOL 5.1.52
Option (D) is correct.

We obtain Thevenin equivalent across terminal a-b.

Thevenin Voltage:
Since there is no independent source present in the network, Thevenin voltage is simply zero i.e. \(V_{Th} = 0 \)

Thevenin Resistance:
Put a test source across terminal a-b
\[
R_{Th} = \frac{V_{test}}{I_{test}}
\]

For the super node
\[V_1 - V_{test} = 2000I_x \]
\[V_1 - V_{test} = 2000\left(\frac{V_1}{4000}\right) \]
\[\frac{V_1}{2} = V_{test} \text{ or } V_1 = 2V_{test} \]

Applying KCL to the super node
Option (C) is correct.

Equation for \(V \cdot I \) can be obtained with Thevenin equivalent across a-b terminals.

Thevenin Voltage: (Open circuit voltage)

![Thevenin Equivalent Circuit](image)

Writing KCL at the top node

\[\frac{V_x}{40} = \frac{V_{th} - V_x}{20} \]

\[V_x = 2V_{th} - 2V_x \]

\[3V_x = 2V_{th} \Rightarrow V_x = \frac{2}{3}V_{th} \]

KCL at the center node

\[V_x - \frac{V_{fl}}{20} + \frac{V_x}{30} = 0.3 \]

\[3V_x - 3V_{th} + 2V_x = 18 \]

\[5V_x - 3V_{th} = 18 \]

\[5\left(\frac{2}{3}\right)V_{th} - 3V_{th} = 18 \]

\[10V_{th} - 9V_{th} = 54 \text{ or } V_{th} = 54 \text{ volt} \]

Thevenin Resistance: When a dependent source is present in the circuit the best way to obtain Thevenin resistance is to remove all independent sources and put a test source across a-b terminals as shown in figure.

![Thevenin Resistance Circuit](image)

\[R_{th} = \frac{V_{test}}{I_{test}} \]

KCL at the top node

\[\frac{V_x}{40} + I_{test} = \frac{V_{test}}{20 + 30} \]

\[\frac{V_x}{40} + I_{test} = \frac{V_{test}}{50} \]

\[V_x = \frac{30}{30 + 20}(V_{test}) = \frac{3}{5}V_{test} \]

(using voltage division)
Substituting V_x into equation (1), we get

$$\frac{3V_{test}}{5(40)} + I_{test} = \frac{V_{test}}{50}$$

$$I_{test} = \frac{V_{test}}{50} - \frac{3}{200} = \frac{V_{test}}{200}$$

$$\Rightarrow R_{Th} = \frac{V_{test}}{I_{test}} = 200 \Omega$$

The circuit now reduced as

$$I = V - V_{Th} = V - \frac{54}{200}$$

$$V = 200I + 54$$

SOL 5.1.54

Option (D) is correct.

To obtain Thevenin resistance put a test source across the terminal a, b as shown.

$$V_{test} = V_x, \quad I_{test} = I_x$$

Writing loop equation for the circuit

$$V_{test} = 600(I_1 - I_2) + 300(I_1 - I_3) + 900(I_1)$$

$$V_{test} = (600 + 300 + 900)I_1 - 600I_2 - 300I_3$$

$$V_{test} = 1800I_1 - 600I_2 - 300I_3 \quad \ldots(1)$$

The loop current are given as,

$$I_1 = I_{test}, \quad I_2 = 0.3V_x, \quad \text{and} \quad I_3 = 3I_{test} + 0.2V_x$$

Substituting these values into equation (1),

$$V_{test} = 1800I_{test} - 600(0.01V_x) - 300(3I_{test} + 0.01V_x)$$

$$V_{test} = 1800I_{test} - 6V_x - 900I_{test} - 3V_x$$

$$10V_{test} = 900I_{test} \quad \text{or} \quad V_{test} = 90I_{test}$$

Thevenin resistance

$$R_{Th} = \frac{V_{test}}{I_{test}} = 90 \Omega$$

Thevenin voltage or open circuit voltage will be zero because there is no independent source present in the network, i.e. $V_{oc} = 0$ V

SOL 5.2

SOL 5.2.1

Correct answer is 3.

We solve this problem using principal of linearity.

In the left, 4Ω and 2Ω are in series and has same current I = 1A.

V₃ = 4I + 2I
= 6I = 6V

I₃ = \frac{V₃}{3} = \frac{6}{3} = 2A
(using ohm’s law)

I₂ = I₃ + I
= 2 + 1 = 3A
(using KCL)

V₁ = (1)I₂ + V₃
= 3 + 6 = 9V
(using KVL)

V = I₃ 6 = \frac{9}{6} = \frac{3}{2} A
(using ohm’s law)

Applying principal of linearity

For V₃ = V₀,
I₁ = \frac{3}{2} A

So for V₃ = 2V₀,
I₁ = \frac{3}{2} \times 2 = 3 A

Correct answer is 3.

SOL 5.2.2

We solve this problem using principal of linearity.

I = \frac{V}{1} = \frac{1}{1} = 1A
(using ohm’s law)

V₂ = 2I + (1)I = 3V
(using KVL)

I₂ = \frac{V₂}{6} = \frac{3}{6} = \frac{1}{2} A
(using ohm’s law)

I₁ = I₂ + I
= \frac{1}{2} + 1 = \frac{3}{2} A
(using KCL)

Applying principal of superposition

When I₃ = I₀, and V = 1V,
I₁ = \frac{3}{2} A
So, if \(I_s = 2I_0 \),
\[I_1 = \frac{3}{2} \times 2 = 3 \text{ A} \]

SOL 5.2.3
Correct answer is 160.
We solve this problem using superposition.
Due to 9 A source only : (Open circuit 6 A source)

![Diagram](image1)

Using current division,
\[V_1 = \frac{20}{20 + (40 + 30)} (9) \Rightarrow V_1 = 80 \text{ volt} \]

Due to 6 A source only : (Open circuit 9 A source)

![Diagram](image2)

Using current division,
\[V_2 = \frac{30}{30 + (40 + 20)} (6) \Rightarrow V_2 = 80 \text{ volt} \]

From superposition,
\[V = V_1 + V_2 = 80 + 80 = 160 \text{ volt} \]

ALTERNATIVE METHOD
The problem may be solved by transforming both the current sources into equivalent voltage sources and then applying voltage division.

SOL 5.2.4
Correct answer is 5.
Using superposition, we obtain \(I \).
Due to 10 V source only : (Open circuit 5 A source)

![Diagram](image3)

\[I_1 = \frac{10}{2} = 5 \text{ A} \]

Due to 5 A source only : (Short circuit 10 V source)

![Diagram](image4)

\[I_2 = 0 \]
\[I = I_1 + I_2 = 5 + 0 = 5 \text{ A} \]

ALTERNATIVE METHOD
We can see that voltage source is in parallel with resistor and current source so voltage across parallel branches will be 10 V and \(I = \frac{10}{2} = 5 \text{ A} \)
Correct answer is $-0.5\, \text{A}$.

Applying superposition,

Due to 6 V source only (Open circuit 2 A current source)

$$I_1 = \frac{6}{\frac{6}{6} + \frac{6}{6}} = 0.5\, \text{A}$$

Due to 2 A source only (Short circuit 6 V source)

$$I_2 = \frac{6}{\frac{6}{6} + \frac{6}{6}}(-2) = -1\, \text{A}$$

$$I = I_1 + I_2 = 0.5 - 1 = -0.5\, \text{A}$$

ALTERNATIVE METHOD

This problem may be solved by using a single KVL equation around the outer loop.

Correct answer is 4.

Applying superposition,

Due to 24 V Source Only (Open circuit 2 A and short circuit 20 V source)

$$I_1 = \frac{24}{\frac{24}{8} + \frac{24}{8}} = 3\, \text{A}$$

Due to 20 V source only (Short circuit 24 V and open circuit 2 A source)
Due to 2 A source only: (Short circuit 24 V and 20 V sources)

Due to short circuit:

\[I_2 = 0 \]

Alternate Method: We can see that current in the middle 4 Ω resistor is \(I - 2 \), therefore \(I \) can be obtained by applying KVL in the bottom left mesh.

SOL 5.2.7

Correct answer is 0.

\[V_1 = V_2 = 0 \]

SOL 5.2.8

Correct answer is 1.5.

Using source transformation of 48 V source and the 24 V source

Source transformation of 8 A and 6 A sources
Writing KVL around anticlock wise direction

\[-12 - 2l + 40 - 4l - 2l - 16 = 0\]
\[12 - 8l = 0\]
\[l = \frac{12}{8} = 1.5 \text{ A}\]

SOL 5.2.9

Correct answer is 2.25.

We apply source transformation as follows.

Transforming 3 mA source into equivalent voltage source and 18 V source into equivalent current source.

6 kΩ and 3 kΩ resistors are in parallel and equivalent to 2 Ω.

Again transforming 3 mA source

\[l = \frac{6 + 6}{2 + 8 + 4 + 2} = \frac{3}{4} \text{ mA}\]

\[P_{4k\Omega} = l^2(4 \times 10^3) = \left(\frac{3}{4}\right)^2 \times 4 = 2.25 \text{ mW}\]

SOL 5.2.10

Correct answer is 3.

Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) to obtain \(R_{Th}\)

\[R_{Th} = 12 \Omega \parallel 4 \Omega = 3 \Omega\]

SOL 5.2.11

Correct answer is 16.8.

Using current division

\[l_1 = \frac{(5 + 1)}{6 + 4}(12) = \frac{6}{10}(12) = 7.2 \text{ A}\]
\[V_1 = I_1 \times 1 = 7.2 \text{ V} \]
\[I_2 = \frac{(3 + 1)}{(3 + 1) + (5 + 1)}(12) = 4.8 \text{ A} \]
\[V_2 = 5I_2 = 5 \times 4.8 = 24 \text{ V} \]
\[V_{Th} + V_1 - V_2 = 0 \] (KVL)
\[V_{Th} = V_2 - V_1 = 24 - 7.2 = 16.8 \text{ V} \]

SOL 5.2.12
Correct answer is 7.

We obtain Thevenin’s resistance across a-b and then use source transformation of Thevenin’s circuit to obtain equivalent Norton circuit.

\[R_{Th} = (5 + 1) \parallel (3 + 1) = 6 \parallel 4 = 2.4 \Omega \]

Thevenin’s equivalent is

\[16.8 \text{ V} \]

Norton equivalent

SOL 5.2.13
Correct answer is -0.5.

Current I can be easily calculated by Thevenin’s equivalent across 6 \Omega.

Thevenin Voltage: (Open Circuit Voltage)
In the bottom mesh \(I_2 = 1 \) A

In the bottom left mesh \(-V_{Th} - 12I_2 + 3 = 0\)

\[V_{Th} = 3 - (12)(1) = -9 \text{ V} \]

Thevenin Resistance:

\[R_{Th} = 12 \Omega \]

(both 4 \(\Omega \) resistors are short circuit)

so, circuit becomes as

\[\begin{align*}
I &= \frac{V_{Th}}{R_{Th} + 6} = \frac{-9}{12 + 6} = \frac{-9}{18} = -0.5 \text{ A}
\end{align*} \]

Note: The problem can be solved easily by a single node equation. Take the nodes connecting the top 4 \(\Omega \), 3 V and 4 \(\Omega \) as supernode and apply KCL.

SOL 5.2.14

Correct answer is 0.

We obtain Thevenin's equivalent across \(R \).

Thevenin Voltage : (Open circuit voltage)

\[\begin{align*}
18 - 6I_x - 2I_x - (1)I_x &= 0 \\
I_x &= \frac{18}{9} = 2 \text{ A}
\end{align*} \]

\[V_{Th} = (1)I_x = (1)(2) = 2 \text{ V} \]

Thevenin Resistance :

\[R_{Th} = \frac{V_{Th}}{I_{sc}} \]

\[I_{sc} \rightarrow \text{Short circuit current} \]

\[I_x = 0 \]

(Due to short circuit)

So dependent source also becomes zero.
\[I_{sc} = \frac{18}{6} = 3 \text{ A} \]

Thevenin resistance,
\[R_{Th} = \frac{V_{Th}}{I_{sc}} = \frac{2}{3} \Omega \]

Now, the circuit becomes as

\[I = \frac{2}{3 + R} = 3 \]
\[2 = 2 + 3R \]
\[R = 0 \]

SOL 5.2.15

Correct answer is 121.5.

We obtain Thevenin’s equivalent across \(R \). By source transformation of both voltage sources

Adding parallel sources and combining parallel resistances

Here,
\[V_{Th} = 5.4 \text{ V, } R_{Th} = 60 \Omega \]

For maximum power transfer
\[R = R_{Th} = 60 \Omega \]
Maximum Power absorbed by R
\[P = \frac{(V_{th})^2}{4R} = \frac{(5.4)^2}{4 \times 60} = 121.5 \text{ mW} \]

ALTERNATIVE METHOD:
Thevenin voltage (open circuit voltage) may be obtained using node voltage method also.

SOL 5.2.16
Correct answer is 3.
First we obtain equivalent voltage and resistance across terminal a-b using Millman’s theorem.

\[V_{ab} = \frac{-60}{15} + \frac{120}{15} + \frac{20}{5} = -24 \text{ V} \]
\[R_{ab} = \frac{1}{\frac{1}{15} + \frac{1}{15} + \frac{1}{5}} = 3 \Omega \]

So, the circuit is reduced as

\[I = \frac{24}{3 + 5} = 3 \text{ A} \]

SOL 5.2.17
Correct answer is 6.
Set all independent sources to zero as shown,

\[R_{th} = 6 \Omega \]

SOL 5.2.18
Correct answer is 0.5.
We solve this problem using linearity and taking assumption that \(I = 1 \text{ A} \).
In the circuit, $V_2 = 4I = 4V$

\[
I_2 = I + I_1
\]

\[
= 1 + \frac{V_2}{4+8} = 1 + \frac{4}{12} = \frac{4}{3} A
\]

$V_3 = 3I_2 + V_2$

\[
= 3 \times \frac{4}{3} + 4 = 8V
\]

$I_5 = I_3 + I_2$

\[
= \frac{V_3}{3} + I_2 = \frac{8}{3} + \frac{4}{3} = 4 A
\]

Applying superposition

When $I_5 = 4A$, $I = 1A$

But actually $I_5 = 2A$, So $I = \frac{1}{4} \times 2 = 0.5 A$

SOL 5.2.19

Correct answer is 1.

Solving with superposition,

Due to 6V Source Only: (Open Circuit 2 mA source)

\[
\begin{align*}
I_s &= \frac{6}{6 + 6} \left| \frac{\text{II}}{12} \right| = \frac{6}{6 + 4} \times 0.6 mA \\
I_1 &= \frac{6}{6 + 12} \left| \frac{\text{I_3}}{18} \right| = \frac{6}{18} \times 0.6 = 0.2 mA \text{ (Using current division)}
\end{align*}
\]

Due to 2 mA source only: (Short circuit 6 V source):

\[
\begin{align*}
I_2 &= \frac{9}{9 + 6} (-2) = -1.2 mA \text{ (Current division)} \\
I &= I_1 + I_2 \text{ (Using superposition)} \\
&= 0.2 - 1.2 = -1 mA
\end{align*}
\]

ALTERNATIVE METHOD

Try to solve the problem using source conversion.

SOL 5.2.20

Correct answer is 4.

We find Thevenin equivalent across a-b.
From the data given in table

\[10 = \frac{V_{Th}}{R_{Th} + 2} \] \hspace{1cm} \text{...(1)}

\[6 = \frac{V_{Th}}{R_{Th} + 10} \] \hspace{1cm} \text{...(2)}

Dividing equation (1) and (2), we get

\[\frac{10}{6} = \frac{R_{Th} + 10}{R_{Th} + 2} \]

\[10R_{Th} + 20 = 6R_{Th} + 60 \]

\[4R_{Th} = 40 \Rightarrow R_{Th} = 10 \Omega \]

Substituting \(R_{Th} \) into equation (1)

\[10 = \frac{V_{Th}}{10 + 2} \]

\[V_{Th} = 10(12) = 120 \, V \]

For \(R_L = 20 \, \Omega \),

\[I_L = \frac{V_{Th}}{R_{Th} + R_L} \]

\[= \frac{120}{10 + 20} = 4 \, A \]

SOL 5.2.21

Correct answer is 4.

For maximum power transfer

\[R_{Th} = R_L = 2 \, \Omega \]

To obtain \(R_{Th} \) set all independent sources to zero and put a test source across the load terminals.

\[R_{Th} = \frac{V_{test}}{I_{test}} \]

Using KVL,

\[V_{test} - 4I_{test} - 2I_{test} - kV_x - 4I_{test} = 0 \]

\[V_{test} - 10I_{test} - k(-2I_{test}) = 0 \] \hspace{1cm} \text{\((V_x = -2I_{test})\)}
\[V_{\text{test}} = (10 - 2k) I_{\text{test}} \]
\[R_{\text{Th}} = \frac{V_{\text{test}}}{I_{\text{test}}} = 10 - 2k = 2 \]
\[8 = 2k \text{ or } k = 4 \]

Correct answer is 18.

To calculate maximum power transfer, first we will find Thevenin equivalent across load terminals.

Thevenin Voltage: (Open Circuit Voltage)

\[V_{\text{Th}} = \frac{2}{2 + 2} (24) \]
\[= 12 \text{ V} \]

Thevenin Resistance:

\[R_{\text{Th}} = 1 + 2 || 2 = 1 + 1 = 2 \Omega \]

Circuit becomes as

\[V_L = \frac{R_L}{R_{\text{Th}} + R_L} V_{\text{Th}} \]

For maximum power transfer \(R_L = R_{\text{Th}} \)

\[V_L = \frac{V_{\text{Th}}}{2R_{\text{Th}}} \times R_{\text{Th}} = \frac{V_{\text{Th}}}{2} \]

So maximum power absorbed by \(R_L \)
\[P_{\text{max}} = \frac{V^2}{R_L} = \frac{V^2}{4R_{\text{Th}}} = \frac{(12)^2}{4 \times 2} = 18 \text{ mW} \]

SOL 5.2.23

Correct answer is 22.5.

The circuit is as shown below:

When \(R_L = 50 \Omega \), power absorbed in load will be

\[\left(\frac{R_s}{R_s + 50} \right)^2 50 = 20 \text{ kW} \] (1)

When \(R_L = 200 \Omega \), power absorbed in load will be

\[\left(\frac{R_s}{R_s + 200} \right)^2 200 = 20 \text{ kW} \] (2)

Dividing equation (1) and (2), we have

\[\left(R_s + 200 \right)^2 = 4(R_s + 50)^2 \]

\[R_s = 100 \Omega \] and \(I_s = 30 \text{ A} \)

From maximum power transfer, the power supplied by source current \(I_s \) will be maximum when load resistance is equal to source resistance i.e. \(R_L = R_s \).

Maximum power is given as

\[P_{\text{max}} = \frac{I_s^2 R_s}{4} = \frac{(30)^2 \times 100}{4} = 22.5 \text{ kW} \]

SOL 5.2.24

Correct answer is 6.

If we solve this circuit directly by nodal analysis, then we have to deal with three variables. We can replace the left most and write most circuit by their Thévenin equivalent as shown below.

Now the circuit becomes as shown

Writing node equation at the top center node

\[\frac{V_1 - 4}{1 + 1} + \frac{V_1}{6} + \frac{V_1 - 12}{1 + 2} = 0 \]
\[\frac{V_1 + 4}{2} + \frac{V_1}{6} + \frac{V_1 - 12}{3} = 0 \]
\[3V_1 - 12 + V_1 + 2V_1 - 24 = 0 \]
\[6V_1 = 36 \]
\[V_1 = 6 \text{ V} \]

SOL 5.2.25

Correct answer is 56.

6Ω and 3Ω resistors are in parallel, which is equivalent to 2Ω.

Using source transformation of 6 A source

Source transform of 4 A source

Adding series resistors and sources on the left

Source transformation of 48 V source
Source transformation of \(\frac{4}{3} \) A source.

\[
I = \frac{12 + 72 + V_s}{19 + 9}
\]

\[
V_s = (28 \times 1) - 12 - 72 = (28 \times 5) - 12 - 72 = 56 \text{ V}
\]

SOL 5.2.26

Correct answer is 0.5.

We obtain \(I \) using superposition.

Due to 24 V source only: (Open circuit 6 A)

Applying KVL

\[
24 - 6l_1 - 3l_1 - 3l_1 = 0
\]

\[
l_1 = \frac{24}{12} = 2 \text{ A}
\]

Due to 6 A source only: (Short circuit 24 V source)

Applying KVL to supermesh

\[
-6l_2 - 3(6 + l_2) - 3l_2 = 0
\]

\[
6l_2 + 18 + 3l_2 + 3l_2 = 0
\]

\[
l_2 = -\frac{18}{12} = -\frac{3}{2} \text{ A}
\]

From superposition,

\[
I = l_1 + l_2
\]

\[
= 2 - \frac{3}{2} = \frac{1}{2} = 0.5 \text{ A}
\]

ALTERNATIVE METHOD:

Note that current in 3Ω resistor is \((I + 6)\) A, so by applying KVL around the outer loop, we can find current \(I \).

SOL 5.2.27

Correct answer is 11.

\[
R_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{\text{Open circuit voltage}}{\text{short circuit}}
\]

Thevenin Voltage: (Open Circuit Voltage \(V_{oc} \))

Using source transformation of the dependent source
Applying KCL at top left node

\[24 = \frac{V_x}{6} \Rightarrow V_x = 144 \text{ V} \]

Using KVL,

\[V_x - 8I - \frac{V_x}{2} - V_{oc} = 0 \]

\[144 - 0 - \frac{144}{2} = V_{oc} \]

\[V_{oc} = 72 \text{ V} \]

Short circuit current \((I_{sc})\):

Applying KVL in the right mesh

\[V_x - 8I_{sc} - \frac{V_x}{2} = 0 \]

\[\frac{V_x}{2} = 8I_{sc} \]

\[V_x = 16I_{sc} \]

KCL at the top left node

\[24 = \frac{V_x}{6} + \frac{V_x - V_x/2}{8} \]

\[24 = \frac{V_x}{6} + \frac{V_x}{16} \]

\[V_x = \frac{1152}{11} \text{ V} \]

\[I_{sc} = \frac{V_x}{16} = \frac{1152}{11} \times \frac{1}{16} = \frac{72}{11} \text{ A} \]

\[R_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{72}{\frac{72}{11}} = 11 \text{ }\Omega \]

ALTERNATIVE METHOD:

We can obtain Thevenin equivalent resistance without calculating the Thevenin voltage (open circuit voltage). Set all independent sources to zero (i.e. open circuit current sources and short circuit voltage sources) and put a test source \(V_{test}\) between terminal a-b as shown
\[R_{Th} = \frac{V_{test}}{I_{test}} \]

\[6I + 8I - \frac{V_x}{2} - V_{test} = 0 \] \hspace{1cm} (KVL)

\[14I - \frac{6I}{2} - V_{test} = 0 \]

\[V_x = 6I_{test} \] \hspace{1cm} (Using Ohm's law)

\[11I = V_{test} \]

So \[R_{Th} = \frac{V_{test}}{I_{test}} = 11 \Omega \]

SOL 5.2.28

Correct answer is 4.

We solve this problem using linearity and assumption that \(I = 1 \text{A} \).

\[V_1 = 4I + 2I \] \hspace{1cm} (Using KVL)

\[= 6 \text{V} \]

\[I_2 = I_1 + I \] \hspace{1cm} (Using KCL)

\[= \frac{V_1}{4} + I = \frac{6}{4} + 1 = 2.5 \text{A} \]

\[V_2 = 4I_2 + V_1 \] \hspace{1cm} (Using KVL)

\[= 4(2.5) + 6 = 16 \text{V} \]

\[I_3 + I_3 = I_2 \] \hspace{1cm} (Using KCL)

\[I_3 = \frac{16}{10} + 2.5 = 3.5 \text{A} \]

When \(I_3 = 3.5 \text{A} \), \hspace{1cm} \(I = 1 \text{A} \)

But \(I_3 = 14 \text{A} \), so \[I = \frac{1}{3.5} \times 14 = 4 \text{A} \]

SOL 5.2.29

Correct answer is 120.

This problem will easy to solve if we obtain Thevenin equivalent across the 12\text{V} source.

Thevenin Voltage: (Open Circuit Voltage)

Mesh currents are

Mesh 1: \(I_1 = 0 \) \hspace{1cm} (due to open circuit)

Mesh 2: \(I_1 - I_3 = 2 \) or \(I_3 = -2 \text{A} \)

Mesh 3: \(I_3 - I_2 = 4 \) or \(I_2 = -6 \text{A} \)

Mesh equation for outer loop
Thevenin Resistance:

\[
\begin{align*}
V_{Th} - 1 \times I_3 - 1 \times I_2 &= 0 \\
V_{Th} - (-2) - (-6) &= 0 \\
V_{Th} + 2 + 6 &= 0 \\
V_{Th} &= -8 \text{ V}
\end{align*}
\]

\[
\begin{align*}
R_{Th} &= 1 + 1 = 2 \Omega
\end{align*}
\]

circuit becomes as

\[
\begin{align*}
I &= \frac{12 - V_{Th}}{R_{Th}} = \frac{12 - (-8)}{2} = 10 \text{ A}
\end{align*}
\]

Power supplied by 12 V source
\[
P_{12V} = 10 \times 12 = 120 \text{ W}
\]

ALTERNATIVE METHOD:

KVL in the loop ABCDA
\[
12 - 1(I - 2) - 1(I - 6) = 0
\]
\[
2I = 20
\]
\[
I = 10 \text{ A}
\]

Power supplied by 12 V source
\[
P_{12V} = 10 \times 12 = 120 \text{ W}
\]

SOL 5.2.30

Correct answer is 286.

For maximum power transfer \(R_L = R_{Th} \). To obtain Thevenin resistance set all independent sources to zero and put a test source across load terminals.
Writing KCL at the top center node:
\[
\frac{V_{\text{test}}}{2k} + \frac{V_{\text{test}} - 2V_x}{1k} = I_{\text{test}} \quad \text{...(1)}
\]

Also, \(V_{\text{test}} + V_x = 0\) (KVL in left mesh)

So, \(V_x = -V_{\text{test}}\)

Substituting \(V_x = -V_{\text{test}}\) into equation (1):
\[
\frac{V_{\text{test}}}{2k} + \frac{V_{\text{test}} - 2(-V_{\text{test}})}{1k} = I_{\text{test}}
\]

\[
V_{\text{test}} + 6V_{\text{test}} = 2I_{\text{test}}
\]

\[
R_{\text{Th}} = \frac{V_{\text{test}}}{I_{\text{test}}} = \frac{2}{7} \text{k}\Omega \approx 286 \text{\Omega}
\]

SOL 5.2.31

Correct answer is 4.

Redrawing the circuit in Thevenin equivalent form

\[
I = \frac{V_{\text{Th}} - V}{R_{\text{Th}}}
\]

or,
\[
V = R_{\text{Th}}I + V_{\text{Th}} \quad \text{(General form)}
\]

From the given graph:
\[
V = -4I + 8
\]

So, by comparing \(R_{\text{Th}} = 4 \text{k}\Omega, \quad V_{\text{Th}} = 8 \text{V}\)

For maximum power transfer \(R_L = R_{\text{Th}}\)

Maximum power absorbed by \(R_L\):
\[
P_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}} = \frac{(8)^2}{4 \times 4} = 4 \text{mW}
\]

SOL 5.2.32

Correct answer is 3.

To find the Thevenin equivalent of the circuit, put a test source between node a and b.

\[
R_{\text{Th}} = \frac{V_{\text{test}}}{I_{\text{test}}}
\]

Writing node equation at \(V_1\):
\[
\frac{V_1 - \alpha l_x}{1} + \frac{V_1}{1} = I_x
\]

\[
2V_1 = (1 + \alpha)I_x \quad \text{...(1)}
\]

\(I_x\) is the branch current in \(1 \Omega\) resistor given as
\[
I_x = \frac{V_{\text{test}} - V_1}{1}
\]
\[V_1 = V_{\text{test}} - I_x \]

Substituting \(V_1 \) into equation (1)

\[2(V_{\text{test}} - I_x) = (1 + \alpha)I_x \]

\[2V_{\text{test}} = (3 + \alpha)I_x \]

\[2V_{\text{test}} = (3 + \alpha)I_{\text{test}} \]

\[R_{Th} = \frac{V_{\text{test}}}{I_{\text{test}}} = \frac{3 + \alpha}{2} = 3 \]

\[3 + \alpha = 6 \]

\[\alpha = 3 \Omega \]

SOL 5.2.33

Correct answer is 16.

We obtain Thevenin equivalent across the load terminals

Thevenin Voltage: (Open circuit voltage)

Rotating the circuit, makes it simple

\[V_{Th} = V_a - V_b \]

Thevenin resistance:*

\[R_{Th} = 16 + (240 + 40) || (20 + 100) \]
Now, circuit reduced as

\[V_{th} + R_L \]

For maximum power transfer

\[R_L = R_{th} = 100 \Omega \]

Maximum power transferred to \(R_L \)

\[P_{\text{max}} = \frac{(V_{th})^2}{4R_L} = \frac{(80)^2}{4 \times 100} = 16 \, \text{W} \]

SOL 5.2.34
Correct answer is 108.

We use source transformation as follows

\[I = \frac{36 - 12}{6 + 2} = 3 \, \text{A} \]

Power supplied by 36 V source

\[P_{36V} = 3 \times 36 = 108 \, \text{W} \]

SOL 5.2.35
Correct answer is 1026.

Now, we do source transformation from left to right as shown
Power supplied by 27 A source

\[P = V_s \times 27 = 38 \times 27 \]

\[= 1026 \, \text{W} \]
\[I_2 = \frac{12}{4} = -3 \text{ A} \]

Due to 4 A source only: (Short circuit 12 V and 18 V sources)

\[I_3 = 0 \]

So,
\[I = I_1 + I_2 + I_3 = 4.5 - 3 + 0 = 1.5 \text{ A} \]

Power dissipated in 4 \(\Omega \) resistor
\[P_{4 \Omega} = I^2(4) = (1.5)^2 \times 4 = 9 \text{ W} \]

Alternate Method: Let current in 4 \(\Omega \) resistor is \(I_4 \), then by applying KVL around the outer loop
\[18 - 12 - 4I_4 = 0 \]
\[I_4 = \frac{6}{4} = 1.5 \text{ A} \]

So, power dissipated in 4 \(\Omega \) resistor
\[P_{4 \Omega} = I^2(4) = (1.5)^2 \times 4 = 9 \text{ W} \]

SOL 5.2.37
Correct answer is \(-10\).

Using, Thevenin equivalent circuit

Thevenin Voltage: (Open Circuit Voltage)

\[I_x = -4 \text{ A} \]

Writing KVL in bottom right mesh
\[-24 - (1)I_x - V_{Th} = 0 \]
\[V_{Th} = -24 + 4 = -20 \text{ V} \]

Thevenin Resistance:
\[R_{Th} = \frac{\text{open circuit voltage}}{\text{short circuit current}} = \frac{V_{oc}}{I_{sc}} \]
\[V_{oc} = V_{Th} = -20 \text{ V} \]

\(I_{sc} \) is obtained as follows

\[I_{sc} = \frac{18}{4} = 4.5 \text{ A} \]
The circuit is as shown below

\[V = \frac{1}{1 + R_{Th}}(V_{Th}) = \frac{1}{1 + \frac{20}{20}} = 10 \text{ volt} \] (Using voltage division)

ALTERNATIVE METHOD:

Note that current in bottom right most 1 \(\Omega \) resistor is \(I_x + 4 \), so applying KVL around the bottom right mesh,

\[-24 - I_x - (I_x + 4) = 0\]

\[I_x = -14 \text{ A} \]

So,

\[V = 1 \times (I_x + 4) = -14 + 4 = -10 \text{ V} \]

SOL 5.2.38

Correct answer is 100.

Writing currents into 100 \(\Omega \) and 300 \(\Omega \) resistors by using KCL as shown in figure.

\[I_x = 1 \text{ A, } V_x = V_{test} \]

Writing mesh equation for bottom right mesh.

\[V_{test} = 100(1 - 2I_x) + 300(1 - 2I_x - 0.01V_x) + 800 \]

\[= 100 \text{ V} \]
SOL 5.2.39

Correct answer is 30.

For $R_L = 10 \, k\Omega$, $V_{abl} = \sqrt{10k \times 3.6m} = 6 \, V$

For $R_L = 30 \, k\Omega$, $V_{abl} = \sqrt{30k \times 4.8m} = 12 \, V$

\[V_{abl} = \frac{10}{10 + R_{Th}} V_{Th} = 6 \] \hspace{1cm} ...(1)

\[V_{abl} = \frac{30}{30 + R_{Th}} V_{Th} = 12 \] \hspace{1cm} ...(2)

Dividing equation (1) and (2), we get $R_{Th} = 30 \, k\Omega$. Maximum power will be transferred when $R_L = R_{Th} = 30 \, k\Omega$.
