YEAR 2016 SET 2

Q.1– Q.5 Carry One Mark Each.

Q1 Based on the given statements, select the appropriate option with respect to grammar and usage
Statements
(i) The height of Mr. X is 6 feet.
(ii) The height of Mr. Y is 5 feet
(A) Mr. X is longer than Mr. Y
(B) Mr. X is more elongated than Mr. Y
(C) Mr. X is taller than Mr. Y
(D) Mr. X is lengthier than Mr. Y

S1 Correct option is (C).
In degrees of comparison Mr. X is taller than Mr. Y is apt.
Positive degree - tall
Comparative degree - taller
Superlative degree - tallest

Q2 The students ______ the teacher on teachers day for twenty years of dedicated teaching.
(A) facilitated (B) felicitated
(C) fantasized (D) facillitated

S1 Correct option is (B).
Felicitate means honour.

Q3 After India’s cricket world cup victory in 1985, Shrotria who was playing both tennis and cricket till then, decided to concentrate only on cricket. And the rest is history. What does the underlined phrase mean in this context?
(A) history will rest in peace
(B) rest is recorded in history books
(C) rest is well known
(D) rest in archaic

S1 Correct option is (C).
‘rest is history’ is an idiomatic expression which means ‘rest is well known’.

Q4 Given \((9 \text{ inches})^{1/2} = (0.25 \text{ yards})^{1/2}\), which one of the following statements is TRUE?
(A) 3 inches = 0.5 yards
(B) 9 inches = 1.5 yards
(C) 9 inches = 0.25 yards
(D) 81 inches = 0.0625 yards

S1 Correct option is (C).

Q5 S, M, E and F are working in shifts in a team to finish a project. M works with twice the efficiency of others but for half as many days as E worked. S and M have 6 hour shifts i a day, whereas E and F have 12 hours shifts. What is the ratio of contribution of M to contribution of E in the project?
(A) 1 : 1 (B) 1 : 2
(C) 1 : 4 (D) 2 : 1

S1 Correct option is (B).
M efficiency = 2 [efficiency of S, E and F]
Contribution of M in the project = \(x \text{ days} \times 6 \text{ hrs} \times 2\)
Contribution of E in the project = \(2x \text{ days} \times 12 \text{ hrs} \times 1\)
\(x \times 6 \times 2 : 2x \times 12 \times 1\)
\(1 : 2\)

Q.6 – Q.10 Carry two Marks Each

Q6 The Venn diagram shows the preference of the student population for leisure activities.

From the data given, the number of students who like to read books or play sports is ______
(A) 44 (B) 51
(C) 79 (D) 108

S1 Correct option is (D).

Q7 Social science disciplines were in existence in an
amorphous form until the colonial period when they were institutionalized. In varying degrees, they were intended to further the colonial interest. In the time of globalization and the economic rise of postcolonial countries like India, conventional ways of knowledge production have become obsolete.

Which of the following can be logically inferred from the above statements?
(i) Social science disciplines have become obsolete.
(ii) Social science disciplines had a pre-colonial origin
(iii) Social science disciplines always promote colonialism
(iv) Social science must maintain disciplinary boundaries

(A) (ii) only (B) (i) and (iii) only
(C) (ii) and (iv) only (D) (iii) and (iv) only

S1 Correct option is (A). Until the colonial period means pre-colonial origin. Other options can’t be inferred.

Q8 Two and a quarter hours back, when seen in a mirror, the reflection of a wall clock without number markings seemed to show 1 : 30. What is the actual current time shown by the clock?
(A) 8 : 15 (B) 11 : 15
(C) 12 : 15 (D) 12 : 45

S1 Correct option is (D).

Time back = $2 \frac{1}{4} = 2$ hrs 15 min

Clock time (C.T) + Mirror Time (M.T) = 12

$\frac{60/}{1.30}$

C.T = 12.00

$\frac{1.30}{10.30}$

∴ The actual time shown by the clock

= $10.30 + 2.15$

= 12.45

Q9 M and N start from the same location. M travels 10 km East and then 10 km North-East. N travels 5 km South and then 4 km South-East. What is the shortest distance (in km) between M and N at the end of their travel?
(A) 18.60 (B) 22.50
(C) 20.61 (D) 25.00

S1 Correct option is (C).

From the given data, the following diagram is possible

Q10 A wire of length 340 mm is to be cut into two parts. One of the parts is to be made into a square and the other into a rectangle where sides are in the ratio of 1:2. What is the length of the side of the square (in mm) such that the combined area of the square and the rectangle is a MINIMUM?
(A) 30 (B) 40
(C) 120 (D) 180

S1 Correct option is (B).

Length of the wire = 340 m

Square

$\frac{2x}{3}$

Rectangle

Perimeter of rectangle $= 2\left[\frac{x}{3} + \frac{2x}{3}\right]$

= $2x$

Side of square $= 340 - 2x$

Side of square $= \frac{340 - 2x}{4}$

Total area = Area of square + Area of rectangle

$= \left[\frac{340 - 2x}{4}\right] + \frac{x}{2} \times \frac{2x}{3}$
\[f(x) = \left[\frac{340 - 2x}{4} \right]^2 + \frac{2x^2}{9} \]

Combined area of square + rectangle = minimum

\[f'(x) = 0 \]
\[f(x) = \left[\frac{340 - 2x}{4} \right]^2 + \frac{2x^2}{9} \]
\[f'(x) = \frac{4}{9}x^2 - \frac{340 - 2x}{4} = 0 \]

Another method:
Elimination procedure from alternatives option (C) and (D) are not possible because area may be maximum.

Option (A)
- Side of the square \(x = 30 \) mm
- Perimeter of the square \(30 + 30 + 30 + 30 = 120 \) mm
- Perimeter of the rectangle \(340 - 120 = 220 \) mm
- \(2x + 2 \times 2x = 220 \)
- \(x = 37 \)
- \(2x = 37 \times 2 = 74 \)
- Area of square \(= x^2 = (30)^2 = 900 \)
- Area of rectangle \(= x \times 2x \)
- \(= 37 \times 74 = 2738 \)
- Total area \(= 900 + 2738 = 3638 \) mm\(^2 \)

Option (B)
- Side of the square \(x = 40 \) mm
- Perimeter of the square \(340 - 160 = 180 \) mm
- \(2x + 2 \times 2x = 180 \) mm
- \(6x = 180 \)
- \(x = 30 \) mm
- Area of the square \(= 40 \times 40 = 1600 \) mm\(^2 \)
- Area of the rectangle \(= 30 \times 2 \times 30 \)
- \(= 1800 \) mm\(^2 \)

\(\therefore \) Total area \(= 1600 + 1800 = 3400 \) mm\(^2 \)

\(\therefore \) Total area \(= 3400 < 3638 \) mm\(^2 \)

Option (B) is correct.

Q.1 – Q.25 Carry One Mark Each

Q11 The value of \(x \) for which the matrix

\[A = \begin{bmatrix} 3 & 2 & 4 \\ 9 & 7 & 13 \\ -6 & -4 & -9 + x \end{bmatrix} \]

has zero as an eigen value is _______.

S1 Correct answer is \(x = 1 \).

For eigen value of \(A \) to be zero, \(\det (A) = 0 \)

\[3((-63 + 7x) + 52) - 2((-81 + 9x) + 78) + 4(-36 + 42) = 0 \]

\(\therefore \) \(x = 1 \)

Q12 Consider the complex valued function

\[f(z) = 2z^2 + b|z|^2 \]

where \(z \) is a complex variable. The value of \(b \) for which the function \(f(z) \) is analytic is _______.

S1 Correct answer is 0.

\[f(Z) = 2z^2 + |Z|^2 \]

For \(b = 0 \), \(f(z) \) becomes polynomial so it is analytic every where only when \(b = 0 \)

Q13 As \(x \) varies from \(-1\) to \(3\), which of the following describes the behaviour of the function \(f(x) = x^3 - 3x + 1 \)

(A) \(f(x) \) increases monotonically
(B) \(f(x) \) increases, then decreases and increases again
(C) \(f(x) \) decreases, then increases and decreases again
(D) \(f(x) \) increases and then decreases

S1 Correct option is (B).

Since, \(f(-1) = -3 \),

\[f(0) = 1 \]
\[f(1) = -1 \]
\[f(2) = -3 \]
\[f(3) = 1 \]

Q14 How many distinct values of \(x \) satisfy the equation

\[\sin(x) = x/2 \]

where \(x \) is in radians?

(A) 1 \hspace{1cm} (B) 2 \hspace{1cm} (C) 3 \hspace{1cm} (D) 4 or more

S1 Correct option is (C).

\[\sin(x) = \frac{x}{2} \]

\(\sin x \) touches at 3 points

Q15 Consider the time-varying vector

\[I(t) = 15 \cos(\omega t) + \hat{y} \sin(\omega t) \]

in Cartesian coordinates, where \(\omega > 0 \) is a constant. When the vector magnitude \(|I| \) is at its minimum value, the angle \(\theta \) that \(I \) makes with the \(x \) axis (in degree, such that \(0 \leq \theta \leq 180 \)) is _______.

S1 Correct answer is 90°.

\[I = 15\cos\omega t\hat{\alpha}_x + 5\sin\omega t\hat{\alpha}_y \]

If \(\theta = 0 \)

\[|I| = 15 \]

\(0 < \theta < \frac{\pi}{2} \)

If \(\theta = \frac{\pi}{2} \)

\[15 \leq \theta \leq 5 \]

\[|I| = 5 \]

Q16 In the circuit shown below, \(V_s \) is a constant voltage source and \(I_L \) is a constant current load.
The value of I_L that maximizes the power absorbed by the constant current load is

(A) $\frac{V}{4R}$
(B) $\frac{V}{2R}$
(C) $\frac{V}{R}$
(D) ∞

S1 Correct option is (B).

Maximum power delivered by the source to any load $P_{\text{max}} = \frac{V^2}{4R}(W)$

Here power absorbed by the load $P_L = (V_s - I_L R)I_L = V_s I_L - I_L^2 R(W)$

If $I_L = \frac{V_s}{2R}$,

$P_L = V_s \frac{V_s}{2R} - \left(\frac{V_s}{2R}\right)^2 R$

$= \frac{V^2_s}{4R} - \frac{V^2}{4R} = \frac{V^2}{4R}(W)$

$P_L = P_{\text{max}}$

Q17

The switch has been in position 1 for a long time and abruptly changes to position 2 at $t = 0$

If time t is in seconds, the capacitor voltage V_C (in volts) for $t > 0$ is given by

(A) $4 \left(1 - \exp\left(-\frac{t}{0.5}\right)\right)$
(B) $10 - 6 \exp\left(-\frac{t}{0.5}\right)$
(C) $4 \left(1 - \exp\left(-\frac{t}{0.5}\right)\right)$
(D) $10 - 6 \exp\left(-\frac{t}{0.5}\right)$

S1 Correct option (D).

$V_C(0^-) = \left(\frac{10}{5}\right)2 = 4 \text{ V} = V_C(0^+)$

$V_C(\infty) = 5 \times 2 = 10 \text{ V}$

$\tau = \text{Req}.C = 6 \times 0.1 = 0.6 \text{ sec}$

$V_C(t) = 10 + \left(4 - 10\right) e^{-t/\tau}$

$= 10 - 6e^{-t/\tau} \text{ V for } 0 \leq t \leq \infty$

Q18

The figure shows an RLC circuit with a sinusoidal current source.

At resonance, the ratio $|I_L| / |I_R|$, i.e., the ratio of the magnitudes of the inductor current phasor and the resistor current phasor, is _____

S1 Correct answer is 0.3163.

At resonance,

$I_L = I$

$I_L = Q I_L = 90^\circ \text{ A}$

$I_C = Q I_L = 90^\circ \text{ A}$

where $Q = \frac{W_s}{C R}$

$= \frac{R \sqrt{C}}{L}$

$= \frac{10 \times 10^2}{10 \times 10^{-3}}$

$= 0.3163$

So,

$\frac{|I_L|}{|I_R|} = Q = 0.3163$

Q19

The Z-parameter matrix for the two-port network shown is

$$
\begin{bmatrix}
2j\omega & j\omega \\
-j\omega & 3 + 2j\omega
\end{bmatrix}
$$

Where the entries are in Ω. Suppose $Z_C(j\omega) = R_C + j\omega$

Then the value of R_C (in Ω) equals _____

S1 Correct answer is 3.

$z(s) = \begin{bmatrix} 2s + s & s \\ 3 + 2s & z_C \end{bmatrix}$

Here, $z_C = s$

and $z_C + z_B = 3 + 2s$

$z_B + s = 3 + 2s$

$z_B = 3 + s$

$R_B + jx_B = 3 + j\omega$

$R_B = 3 \Omega$

Q20

The energy of the signal $x(t) = \frac{\sin(4\pi t)}{4\pi}$ is _____

S1 Correct answer is 0.25.
\[E_{o(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega \]
\[= \frac{1}{2\pi} \times \frac{1}{10} \times 8\pi \]
\[= \frac{1}{4} = 0.25 \]

Q21 The Eberts – Moll model of a BJT is valid
(A) only in active mode
(B) only in active and saturation modes
(C) only in active and cut-off modes
(D) in active, saturation and cut-off modes

S1 Correct option is (D).

Q22 A long-channel NMOS transistor is biased in the linear region with \(V_{gs} = 50 \text{ mV} \) and is used as a resistance. Which one of the following statements is NOT correct?
(A) If the device width \(W \) is increased, the resistance decreases
(B) If the threshold voltage is reduced, the resistance decreases
(C) If the device length \(L \) is increased, the resistance decreases
(D) If \(V_{gs} \) is increased, the resistance increases.

S1 Correct option is (D).

Q23 Assume that the diode in the figure has \(V_m = 0.7 \text{ V} \), but is otherwise ideal.

The magnitude of the current \(i_2 \) (in mA) is equal to \(\boxed{0.25} \).

S1 Correct answer is 0.25.

Diode needs at least 0.7 V, with 0.5 V at the terminals, the diode is OFF. Therefore the circuit reduce to

\[I_2 = \frac{2}{2k + 6k} = \frac{2}{8k} = 0.25 \text{ mA} \]

Q24 Resistor \(R_i \) in the circuit below has been adjusted so that \(I_1 = 1 \text{ mA} \). The bipolar transistor \(Q_1 \) and \(Q_2 \) are perfectly matched and have very high current gain, so their base current are negligible. The supply voltage \(V_{cc} \) is 6 V. The thermal voltage \(kT/q \) is 26 mV.

The value of \(R_2 \) (in \(\Omega \)) for which \(I_2 = 100 \mu A \) is \(\boxed{598.67} \).

S1 Correct answer is 598.67.

\[I_C = I_S e^{\frac{V_{I_2}}{V_T}} \]

\[\therefore V_{out} = \frac{V_I}{I_1} \left| I_2 \right| = \frac{V_I}{I_1} I_2 \]

\[V_{out} = V_{out} + I_1 R_2 \]

and

\[V_I = \frac{kT}{q} = 26 \text{ mV} \]

\[\therefore R_2 = \frac{V_{out}}{I_2} - \frac{V_{out}}{I_2} = \frac{V_I}{I_2} \left| I_2 \right| \]

\[= \frac{20 \text{ mV} \ln \frac{1 \text{ mA}}{100 \mu A}}{100 \mu A} = 598.67 \Omega \]

Q25 Which one of the following statements is correct about an ac-coupled common-emitter amplifier operating in the mid-band region?
(A) The device parasitic capacitances behave like open circuits, whereas coupling and bypass capacitances behave like short circuits.
(B) The device parasitic capacitances, coupling capacitances and bypass capacitances behave like open circuits.

(B) The device parasitic capacitances, coupling capacitances and bypass capacitances behave like open circuits.
(C) The device parasitic capacitances, coupling capacitances and bypass capacitances behave like short circuits.

(D) The device parasitic capacitances behave like short circuits, whereas coupling and bypass capacitances behave like open circuits.

S1 Correct option is (A).

The parasitic capacitances are in PF and the coupling and bypass capacitors are in \(\mu F \). Therefore for the mid frequency band, parasitic capacitance act like open circuits and coupling and bypass capacitances act like short circuits.

Q26 Transistor geometries in a CMOS inverter have been adjusted to meet the requirement for worst case charge and discharge times for driving a load capacitor \(C \). This design is to be converted to that of a NOR circuit in the same technology, so that its worst case charge and discharge times while driving the same capacitor are similar. The channel length of all transistors is to be kept unchanged. Which one of the following statements is correct?

(A) Widths of PMOS transistors should be doubled, while widths of NMOS transistors should be halved.

(B) Widths of PMOS transistors should be doubled, while widths of NMOS transistors should not be changed.

(C) Widths of PMOS transistors should be halved, while widths of NMOS transistors should not be changed.

(D) Widths of PMOS transistors should be unchanged, while widths of NMOS transistors should be halved.

S1 Correct option is (B).

Width of PMOS transistors should be halved while width of NMOS transistors should not be changed, because NMOS transistors are in parallel. If anyone transistor ON, output goes to LOW.

Q27 Assume that all the digital gates in the circuit shown in the figure are ideal, the resistor \(R = 10 \, k\Omega \) and the supply voltage is 5 V. The \(D \) flip-flops \(D_1, D_2, D_3, D_4 \) and \(D_5 \) are initialized with logic values, 0, 1, 0, 1 and 0, respectively. The clock has a 30% duty cycle.

Q28 A 4 : 1 multiplexer is to be used for generating the output carry of a full adder. \(A \) and \(B \) are the bits to be added while \(C_{in} \) is the input carry and \(C_{out} \) is the output carry. \(A \) and \(B \) are to be used as the select bits with \(A \) being the more significant select bit.

Which one of the following statements correctly describes the choice of signals to be connected to the inputs \(I_0, I_1, I_2 \) and \(I_3 \) so that the output is \(C_{out} \)?

(A) \(I_0 = 0, I_1 = C_{in}, I_2 = C_{in} \) and \(I_3 = 1 \)

(B) \(I_0 = 1, I_1 = C_{in}, I_2 = C_{in} \) and \(I_3 = 1 \)

(C) \(I_0 = C_{in}, I_1 = 0, I_2 = 1 \) and \(I_3 = C_{in} \)

(D) \(I_0 = 0, I_1 = C_{in}, I_2 = 2 \) and \(I_3 = C_{in} \)

S1 Correct option is (A).

\(C_{i+1}(A, B, C) = \Sigma m(3, 5, 6, 7) \) using 4 : 1 Max

\[
\begin{array}{c|cccc}
 & I_0 & I_1 & I_2 & I_3 \\
\hline
C_{in} & 0 & 2 & 4 & \text{X} \\
C_{out} & 1 & \text{X} & \text{X} & \text{X} \\
0 & C_{in} & C_{in} & 1 \\
\end{array}
\]

Q29 The response of the system \(G(s) = \frac{s - 2}{(s + 1)(s + 3)} \) to the unit step input \(u(t) \) is \(y(t) \).
The value of \(\frac{dy}{dt} \) at \(t = 0^+ \) is __________

S1 Correct answer is 1.

Method 1:

Given \(Y(s) = \frac{s - 2}{(s + 1)(s + 3)} u(s) \)

\[
Y(s) = \frac{s - 2}{s(s + 1)(s + 3)} \quad \text{[Given } u(s) \frac{1}{s} \text{]} \]

\[
\begin{aligned}
L \left[\frac{dy}{dt} \right] &= sY(s) \\
&= \frac{s - 2}{(s + 1)(s + 3)} \\
&= \frac{1}{s} - \frac{2}{s + 1} + \frac{3}{s + 3}
\end{aligned}
\]

\[
\frac{dy}{dt} \bigg|_{t=0} = \left. \frac{1}{s} \right|_{t=0} - \left. \frac{2}{s + 1} \right|_{t=0} + \left. \frac{3}{s + 3} \right|_{t=0} = 1
\]

Method 2:

\[
Y(s) = \frac{(s - 2)}{s(s + 1)(s + 3)} = \frac{-2}{3s} + \frac{3}{2(s + 1)} + \frac{5}{6(s + 3)}
\]

\[
y(t) = -\frac{2}{3} e^{-3t} + \frac{3}{2} e^{-t} - \frac{5}{6} (3t - 3) e^{-3t}
\]

\[
\frac{dy}{dt}(t = 0+) = -\frac{3}{2} + \frac{5}{2} = 1
\]

Q30 The number and direction of encirclements around the point \(-1 + j0\) in the complex plane by the Nyquist plot of \(G(S) = \frac{1 - s}{4 + 2s} \) is

(A) zero (B) one, anti-clockwise (C) one, clockwise (D) two, clockwise

S1 Correct option is (A).

Number of Encirclements about \((-1, j0)\) is Zero

Q31 A discrete memoryless source has an alphabet \(\{a_1, a_2, a_3, a_4\}\) with corresponding probabilities \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\). The minimum required average codeword length in bits to represent this source for error-free reconstruction is __________

S1 Correct answer is 1.75.

\[
H = \frac{1}{2} \log_2 2 + \frac{1}{4} \log_2 4 + \frac{1}{8} \log_2 8 + \frac{1}{8} \log_2 8
\]

\[
= 1.75 \text{ bits/word}
\]

\(\therefore L_{\text{min}} = H\)

Q32 A speech signal is sampled at 8 kHz and encoded into PCM format using 8 bits/sample. The PCM data is transmitted through a baseband channel via 4-level PAM. The minimum bandwidth (in kHz) required for transmission is __________

S1 Correct answer is 16.

\[R_b = 64 \text{ kbps} \]

\[\text{BW} = 32 \text{ kHz} \]

\[(B_T)_{\text{min}} = \frac{R_b}{2 \log_2 M} = \frac{R_b}{2 \log_2 4} = \frac{64}{2 \times 2} = \frac{64}{4} = 16 \text{ kHz} \]

Q33 A uniform and constant magnetic field \(B = \hat{z}B\) exists in the \(\hat{z}\) direction in vacuum. A particle of mass \(m\) with a small charge \(q\) is introduced into this region with an initial velocity \(v = \hat{x}v_x + \hat{z}v_z\). Given that \(B, m, q, v_x, \text{ and } v_z\) are all non-zero, which one of the following describes the eventual trajectory of the particle?

(A) Helical motion in the \(\hat{z}\) direction (B) Circular motion in the \(xy\) plane (C) Linear motion in the \(\hat{z}\) direction (D) Linear motion in the \(\hat{x}\) direction

S1 Correct option is (A).

Given \(\vec{B} = B\hat{z}\), \(\vec{V} = V_x \hat{x} + V_z \hat{z}\)

\(x\)-component of \(\vec{V}\) is perpendicular to magnetic filed \(\vec{B}\). A change moving perpendicular to magnetic field experience a radial force causing circular motion shown in figure.

\(z\)-component of \(\vec{V}\) is parallel to magnetic field \(\vec{B}\). A change moving parallel to the field generates no force shown in figure (b).

Motion with components perpendicular and parallel to the field causes the change to move in a helical path along +\(z\) direction. Show in figure (c).

Q34 Let the electric field vector of a plane electromagnetic wave propagating in a homogenous medium be expressed as \(E = \hat{x}E_x e^{j(\omega t - z\beta)}\), where the propagation constant \(\beta\) is a function of the angular frequency \(\omega\). Assume \(\beta(\omega)\) and \(E_x\) are known and are real. From the information available, which one of the following CANNOT be determined?

(A) The type of polarization of the wave (B) The group velocity of the wave (C) The phase velocity of the wave (D) The power flux through the \(z = 0\) plane

S1 Correct option is (D).
Given \(\vec{E} = xEx e^{-i(\omega t - k_0 z)} \)

As medium properties and are of \(z = 0 \) plane is not given in the data, hence Average power flow (or) power flux cannot be determined.

Q35 Light from the free space is incident at an angle \(\theta_i \) to the normal of the facet of a step-index large core optical fibre. The core and cladding refractive indices are \(n_1 = 1.5 \) and \(n_2 = 1.4 \), respectively.

The maximum value of \(\theta_i \) (in degrees) for which the incident light will be guided in the core of the fibre is __________

S1 Correct answer is 32.58.

Given \(n_1 = 1.5, n_2 = 1.4 \)

The maximum angle over which the incident light rays entering the fiber is called acceptance angle, \(\theta_A \).

\[
\sin \theta_A = \sqrt{n_1^2 - n_2^2} = \sqrt{1.5^2 - 1.4^2} = 32.58^\circ
\]

Q36 The ordinary differential equation \(\frac{dx}{dt} = -3x + 2 \), with \(x(0) = 1 \) is to be solved using the forward Euler method. The largest time step that can be used to solve the equation without making the numerical solution unstable is __________

S1 Correct answer is 0.66.

If \(|1 - 3h| < 1\) then solution of differential equation is stable

\[
-1 < 1 < -3h < 1 \\
-2 < -3h < 0 \\
0 < 3h < 2 \\
0 < h < \frac{1}{3}
\]

\(\therefore \) If \(0 < h < \) then we get stable.

Q37 Suppose C is the closed curve defined as the circle \(x^2 + y^2 = 1 \) with C oriented anti-clockwise. The value of \(\oint_C (xy^2 dx + x^2 ydy) \) over the curve C equals __________

S1 Correct answer is 0.

Using Green’s Theorem

\[
\oint_C (xy^2 dx + x^2 ydy) = \iint_R (2xy - 2xy) dxdy = 0
\]

Q38 Two random variables \(X \) and \(Y \) are distributed according to

\[
f_{X,Y}(x,y) = \begin{cases} (x+y), & 0 \leq x \leq 1, 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}
\]

The probability \(P(X + Y \leq 1) \) is _______

S1 Correct answer is 0.33.

\[
P(X + Y \leq 1) = \int \int f(x,y) dxdy = \int_0^1 \int_{-x}^{1-x} (x+y) \frac{y}{2} dy dx = \int_0^1 \left(\frac{x(1-x)}{2} + \frac{(1-x)^2}{2} \right) dx = 0.33
\]

Q39 The matrix \(A = \begin{bmatrix} 1 & 0 & 3 & 7 \\ 2 & 5 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & b \end{bmatrix} \) had \(\det(A) = 100 \) and \(\text{trace}(A) = 14 \).

The value of \(|a - b| \) is _______

S1 Correct answer is 3

\[
\det(A) = 100 \\
\text{trace}(A) = 14 \\
a + b + 7 = 14 \\
a + b = 7
\]

\[
\Rightarrow 10ab = 100 \Rightarrow ab = 10
\]

\(a = 5 \\
\Rightarrow b = 2 \) (or)

\(a = 2, b = 5 \)

\(\Rightarrow |a - b| = 3 \)

Q40 In the given circuit, each resistor has a value equal to \(1 \Omega \).
What is the equivalent resistance across the terminals a and b?
(A) $\frac{1}{6} \Omega$
(B) $\frac{1}{3} \Omega$
(C) $\frac{9}{20} \Omega$
(D) $\frac{8}{15} \Omega$

S1 Correct option is (D)

![Circuit Diagram](image)

So, $$R_{ab} = \frac{12}{105} + \left(\frac{240}{1155} - \frac{4}{11}\right)(1 + \frac{60}{105})$$

$$= 0.1143 + 0.41485$$

$$= 0.53 \Omega$$

$$= \frac{8}{15} \Omega$$

Q41 In the circuit shown in the figure, the magnitude of the current (in amperes) through R_2 is ______

![Circuit Diagram](image)

S1 Correct answer is 5

Nodal $$\frac{v - 60 \text{ V}}{5} - 0.04v_s + \frac{v}{8} = 0$$

Q42 A continuous-time filter with transfer function $H(s) = \frac{2s + 6}{s^2 + 6s + 8}$ is converted to a discrete time filter with transfer function $G(Z) = \frac{Z^2 - 0.367}{Z^2 - 0.5032Z + 0.049}$ so that the impulse response of the continuous-time filter, sampled at 2 Hz, is identical at the sampling instants to the impulse response of the discrete time filter. The value of k is.

S1 Correct answer is 0.049

$$H(s) = \frac{2s + 6}{s^2 + 6s + 8}$$

$$= \frac{2s + 6}{(s + 2)(s + 4)}$$

$$h(t) = e^{-2t}u(t) + e^{-4t}u(t)$$

$$T_s = \frac{1}{f_s}$$

$$= \frac{1}{2}$$

$$h(nT_s) = e^{-2nT_s}u(nTs) + e^{-4nT_s}u(nTs)$$

$$H(z) = \frac{z}{z - e^{-2T_s}} + \frac{z}{z - e^{-4T_s}}$$

$$= \frac{z}{z - 0.367} + \frac{z}{z - 0.135}$$

$$H(z) = \frac{z^2 - 0.135z + z^2 - 0.367z}{z^2 - 0.5032z + 0.049}$$

$$= \frac{2z^2 - 0.5032z}{z^2 - 0.5032z + 0.049}$$

$$k = 0.049$$

Q43 The Discrete Fourier Transform (DFT) of the 4-point sequence

$$X[n] = \{x[0], x[1], x[2], x[3]\}$$

$$= \{3, 2, 3, 4\}$$

If $X[k]$ is the DFT of the 12-point sequence $x[n] = \{3, 0, 0, 2, 0, 0, 3, 0, 4, 0, 0\}$, The value of $\frac{x[8]}{x[11]}$ is ______

S1 Correct answer is 6

Interpolation in time domain equal to replication in frequency domain.
\[x_i(n) = \frac{n}{3^n} \]
\[X_i(\omega) = [12, 2j, 0, -2j, 12, 2j, 0, -2j] \]
\[X_i(11) = -2j \]
\[\begin{vmatrix} X_i(8) \\ X_i(8) \end{vmatrix} = \begin{vmatrix} 12 \\ -2j \end{vmatrix} = 6 \]

Q44 The switch \(S \) in the circuit shown has been closed for a long time. It is opened at time \(t = 0 \) and remains open after that. Assume that the diode has zero reverse current and zero forward voltage drop.

The steady state magnitude of the capacitor voltage \(v_c \) (in volts) is _______

S1 Correct answer is 100

\[i_C(0^-) = \frac{10}{1} = 10 A \]
\[v_C(0^-) = 0 V \]
\[v_C(0^+) = v_C(0^-) \]

For diode,
\[R_n = \infty \Omega \text{ and } R_f = 0 \Omega \text{ (given)} \]

For \(t \geq 0 \)

Transform the above network in Laplace domain.

\[\Rightarrow v(t) = -10 \sqrt{\frac{L}{C}} \sin \omega_n t \text{ for } 0 \leq t \leq \infty \]

where \(\omega_n = \frac{1}{\sqrt{LC}} \text{ rad/sec} \)

\[\Rightarrow v(t) = -100 \sin 10^4 t \text{ for } 0 \leq t \leq \infty \]

By kVL \[\Rightarrow v(t) + v_C(t) = 0 \]
\[v_C(t) = -v(t) \]
\[= 100 \sin(10000t) V \text{ for } 0 \leq t \leq \infty \]

\[v_C = 100 \angle -90^\circ \]
\[|v_C| = 100 V \]

Q45 A voltage \(V_C \) is applied across a MOS capacitor with metal gate and \(p \)-type silicon substrate at \(T = 300 \) K. The inversion carrier density (in number of carriers per unit area) for \(V_G \) is \(8 \times 10^{11} \text{ cm}^{-2} \). For \(V_G = 1.3 \) V, the inversion carrier density is \(4 \times 10^{12} \text{ cm}^{-2} \). What is the value of the inversion carrier density for \(V_G = 1.8 \) V?

(A) \(4.5 \times 10^{11} \text{ cm}^{-2} \)

(B) \(6.0 \times 10^{11} \text{ cm}^{-2} \)

(C) \(7.2 \times 10^{11} \text{ cm}^{-2} \)

(D) \(8.4 \times 10^{11} \text{ cm}^{-2} \)

S1 Correct option is (B)

\[V_B = \frac{q}{N_D} \frac{E_{\text{crit}}}{\Delta X} \]
\[E_{\text{crit}} \text{ is CONSTANT} \]

Q46 Consider avalanche breakdown in a silicon \(p^+ n \) junction. The \(n \)-region is uniformly doped with a donor density \(N_D \). Assume that breakdown occurs when the magnitude of the electric field at any point in the device becomes equal to the critical field \(E_{\text{crit}} \). Assume \(E_{\text{crit}} \) to be independent of \(N_D \). If the built-in voltage of the \(p^+ n \) junction is much smaller than the breakdown voltage, \(V_{BR} \), the relationship between \(V_{BR} \) and \(N_D \) is given by

(A) \(V_{BR} \times \sqrt{N_D} = \text{constant} \)

(B) \(N_D \times \sqrt{V_{BR}} = \text{constant} \)

(C) \(N_D \times V_{BR} = \text{constant} \)

(D) \(N_D / V_{BR} = \text{constant} \)

S1 Correct option is (C)

\[V_0 + V_{BR} = \frac{e E_{\text{crit}}}{2q} \left[\frac{1}{N_D} + \frac{1}{N_A} \right] \]
\[V_{BR} \ll \frac{1}{N_A} \ll \frac{1}{N_D} \]

Q47 Consider a region of silicon devoid of electrons and holes, with an ionized donor density of \(N_D^+ = 10^{17} \text{ cm}^{-3} \). The electric field at \(x = 0 \) is 0 V/cm and the electric filed
at \(x = L \) is 50 kV/cm in the positive \(x \) direction. Assume that the electric filed is zero in the \(y \) and \(z \) directions at all points.

Given,

\[
q = 1.6 \times 10^{-19} \text{ coulomb}
\]

\[
\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}
\]

\[
\varepsilon_r = 11.7 \text{ for silicon}
\]

the value of \(L \) in nm is ______

\[
\text{Correct answer is 32.358 nm}
\]

Q48 Consider a long-channel NMOS transistor with source and body connected together. Assume that the electron mobility is independent of \(V_{GS} \) and \(V_{DS} \). Given,

\[
g_m = 0.5 \mu A/V
\]

\[
V_{DS} = 50 \text{ mV and}
\]

\[
V_{GS} = 2 \text{ V}
\]

\[
g_t = 8 \mu A/V \text{ for } V_{GS} = 2 \text{ V and}
\]

\[
V_{DS} = 0 \text{ V}
\]

where, \(g_m = \frac{\partial I_p}{\partial V_{GS}} \) and

\[
g_t = \frac{\partial I_p}{\partial V_{DS}}
\]

The threshold voltage (in volts) of the transistor is

\[
\text{Correct answer is 1.2 Volts.}
\]

\[
I_0 = \mu_n c_{ox} \frac{W}{L} \left((V_{gs} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right)
\]

\[
g_m = \frac{dI_p}{dV_{gs}} = \mu_n c_{ox} \frac{W}{L} \cdot V_{DS}
\]

\[
= 0.5 \times 10^{-6}
\]

\[
= 10 \times 10^{-6}
\]

\[
g_t = \frac{dI_p}{dV_{gs}} = \mu_n c_{ox} \frac{W}{L} \cdot [V_{gs} - V_T]
\]

\[
= 8 \times 10^{-6}
\]

\[
V_{GS} - V_T = 10 \times 10^{-6}
\]

\[
V_T = V_{gs} - 0.8
\]

\[
V_T = 2 \text{ V} - 0.8 \text{ V}
\]

\[
= 1.2 \text{ V}
\]

\[
V_T = 1.2 \text{ V}
\]

Q49 The figure shows a half-wave rectifier with a 475 \(\mu F \) filter capacitor. The load draws a constant current \(I_0 = 1 \text{ A} \) from the rectifier. The figure also shows the input voltage \(V_i \), the output voltage \(V_C \) and the peak-to-peak voltage ripple \(u \) on \(V_C \). The input voltage \(V_i \) is a triangle-wave with an amplitude of 10 V and a period of 1 ms.

\[
\text{The value of the ripple } u \text{ (in volts) is ______}
\]

\[
\text{Correct answer is 2.1 V}
\]
Q50 In the opamp circuit shown, the Zener diodes Z_1 and Z_2 clamp the output voltage V_0 to $+5\,\text{V}$ or $-5\,\text{V}$. The switch S is initially closed and is opened at time $t = 0$

![Circuit Diagram]

The time $t = t_1$ (in seconds) at which V_0 changes state is ________

S1 Correct answer is 0.798 sec

At $t = 0^-$ the output V_0 changes state when $V_N = 1\,\text{V}$ for $t \geq 0$

![Circuit Diagram]

$$V_0(t) = [V_C(0) - V_C(\infty)]e^{-t/RC} + V_C(\infty)$$

$$= [0 - 20]e^{-t/30\times 10^6} + 20$$

$$= 20 - 20e^{-t}$$

$$V_N = 10 - V_C$$

$$= 10 - [20 - 20e^{-t}]$$

$$= 10 + 20e^{-t}$$

For op-amp to change state

$$V_N = V_f$$

$$-10 + 20e^{-t} = -1$$

$$20e^{-t} = 9$$

$$-t = \ln\left(\frac{9}{20}\right)$$

$$t = 0.798\,\text{sec}$$

Q51 A opamp has a finite open loop voltage gain of 100. Its input offset voltage $V_{in} (= +5\,\text{mV})$ is modeled as shown in the circuit below. The amplifier is ideal in all other respects. V_{input} is 25 mV.

The output voltage (in millivolts) is ________

Q52 An 8 Kbyte ROM with an active low Chip Select (CS) input is to be used in an 8085 microprocessor based system. The ROM should occupy the address range 1000 H to 2FFFH. The address lines are designed as A_{15} to A_0, where A_{15} is the most significant address bit. Which one of the following logic expressions will generate the correct CS signal for this ROM?

(A) $A_{15} + A_{14} + (A_{13} \cdot A_{12} + \overline{A_{13}} \cdot \overline{A_{12}})$

(B) $A_{15} \cdot A_{14} \cdot (A_{12} + A_{12})$

(C) $A_{15} + A_{14} \cdot (A_{13} \cdot A_{12} + \overline{A_{13}} \cdot A_{12})$

(D) $\overline{A_{15}} + A_{14} + A_{13} \cdot A_{12}$

S1 Correct option is (A)

Address Range given is

Q53 In an N bit flash ADC, the analog voltage is fed simultaneously to $2^n - 1$ comparators. The output of the comparators is then encoded to a binary format using digital circuits. Assume that the analog voltage source V_{in} (whose output is being converted to digital format) has a
source resistance of 75Ω as shown in the circuit diagram below and the input capacitance of each comparator is 8 pF. The input must settle to an accuracy of 1/2 LSB even for a full scale input change for proper conversion. Assume that the time taken by the thermometer to binary encoder is negligible.

If the flash ADC has 8 bit resolution, which one of the following alternatives is closest to the maximum sampling rate?

(A) 1 megasamples per second
(B) 6 megasamples per second
(C) 64 megasamples per second
(D) 256 megasamples per second

Correct option is (B)

\[V_{in}^1 = \frac{V_n}{RC_{eq}} T \]

\[V_n \] has to settle down within \(\frac{1}{2} \) LSB of full scale value

i.e. \[\frac{509}{510} V_n = \frac{V_n T}{75 \times (255 \times 8 \times 10^{-12})} \]

\[T \approx 0.15\, \mu \text{sec} \]

Thus sample period \(T_s \geq T \)

\[T_s \geq 0.15 \, \text{msec} \]

\[f_s, \, \text{max} = \frac{1}{T_s} \]

\[\approx 6 \, \text{Megasamples} \]

\(Q54 \) The state transition diagram for a finite state machine with states A, B and C, and binary inputs X, Y and Z is shown in the figure.

Which one of the following statements is correct?

(A) Transitions from State A are ambiguously defined.
(B) Transition from State B are ambiguously defined.
(C) Transitions from State C are ambiguously defined.
(D) All of the state transitions are defined unambiguously

Correct option is (C)

In state C, when XYZ = 111, then Ambiguity occurs

Because, from state C \(\Rightarrow \) When \(X = 1, \, Z = 1 \)

\(\Rightarrow \) N.S. is A

When \(Y = 1, \, Z = 1 \) \(\Rightarrow \) N.S. is B

\(Q55 \) In the feedback system shown below \(G(s) = \frac{1}{s^2 + 2s} \).

The step response of the closed-loop system should have minimum setting time and have no overshoot.

The required value of gain \(k \) to achieve this is ______

Correct answer is 1

Given \(G(s) = \frac{1}{s^2 + 2s} \)

From Diagram \(CE \) \(\Rightarrow \) \(1 + KG(s) = 0 \)

\(s^2 + 2s + K = 0 \)

Minimum Settling Time is obtain. For Critical Damped System for Critical Damped System.

\((\xi = 1) \) the % \(m_p = 0\% \)

\[2\xi\omega_n = 2 \]

\[2 \times 1 \times \omega_n = 2 \]

\[\omega_n = 1 \, \text{rad/sec.} \]

\[K = 1 \]

\(Q56 \) In the feedback system shown below

\(G(s) = \frac{1}{(s+1)(s+2)(s+3)} \)
The positive value of k for which the gain margin of the loop is exactly 0 dB and the phase margin of the loop is exactly zero degree is ______

S1 Correct answer is 60

Given forward path $TF = \frac{1}{(s + 0.1)(s + 10)(s + p_1)}$

$GM = \tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{10}\right) - \tan^{-1}\left(\frac{\omega}{p_1}\right)$

$PM = 0$

That means Given System is Marginal Stable

$1 + KG(s) = 0$

$CE = s^3 + 11s^2 + 6s + 6 + K$

$S^3 = 1$

$S^2 = 6 + K$

$S = \left(\frac{66 - 6 - K}{11}\right) = 0$

$S_0 = (6 + K)$

$K = 60$ For Marginal Stable

Q57 The Asymptotic Bode Phase plot of $G(S) = \frac{k}{(s + 0.1)(s + 10)(s + p_1)}$

with k and p_1 both positive, is shown below.

The value of p_1 is ______

S1 Correct answer is 1

From the Bode Diagram at $\omega = 1$, the phase Angle is -135°

$-135^\circ = -\tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{10}\right) - \tan^{-1}\left(\frac{\omega}{p_1}\right)$

$-135^\circ = -\tan^{-1}\left(\frac{1}{0.1}\right) - \tan^{-1}\left(\frac{1}{10}\right) - \tan^{-1}\left(\frac{1}{p_1}\right)$

$-135^\circ = \tan^{-1}\left(\frac{1}{p_1}\right)$

$1 = \frac{1}{P_1}$

$P_1 = 1$

S1 Correct answer is 1°

The roll-off factor of a pulse with a raised cosine spectrum is ______

Q58 An information source generates a binary sequence $\{\alpha_n\}$ such that it takes one of the two possible values -1 and $+1$ with equal probability and are statistically independent and identical distributed. This sequence is pre-coded to obtain another sequence $\{\beta_n\}$ as $\beta_n = \alpha_n + k\alpha_{n-3}$. The sequence $\{\beta_n\}$ is used to modulate a pulse $g(t)$ to generate the baseband signal

$X(t) = \sum_{n=-\infty}^{\infty} \beta_n g(t - nT)$

where $g(t) = \begin{cases} 1, & 0 \leq t \leq T \\ 0, & \text{otherwise} \end{cases}$

If there is a null at $f = \frac{1}{T}$ in the power spectral density of $X(t)$, then k is ______

S1 Correct answer is 60

$\text{Bw} = 1500 \text{ Hz}$

$\frac{R_t[1 + \alpha]}{\log_2^6} = 1500 \text{ Hz}$

$R_t[1 + \alpha] = 1500 \times 4 = 6000$

$(1 + \alpha) = \frac{6000}{4800} = 0.25$

Q59 An ideal band-pass channel 500 Hz-2000 Hz is deployed for communication. A modem is designed to transmit bits at the rate of 4800 bits/s using 16-QAM. The roll-off factor of a pulse with a raised cosine spectrum that utilizes the entire frequency band is ______

S1 Correct answer is 0.25
Q60 Consider a random process $X(t) = 3V(t) - 8$. where $V(t)$ is a zero mean stationary random process with autocorrelation $R_v(\tau) = 4e^{-|\tau|}$. The power in $X(t)$ is _______.

S1 Correct answer is 100

$E[\hat{X}^2(t)] = E[3V(t) - 8]^2$

$= E[3V(t)^2 + 64 - 2 \times 3V(t) \times 8]$

$= 9E[V^2(t)] + 64 - 48E[V(t)]$

$\therefore E[V(t)] = 0$

$E[\hat{X}^2(t)] = MS$

$= R(0)$

$= 4e^{-|0|}$

$= 4$

$E[\text{constant}] = \text{constant}$

$E[\hat{X}^2(t)] = 9 \times 4 + 64$

$= 36 + 64$

$= 100$

Q61 A binary communication system makes use of the symbols “zero” and “one”. There are channel errors. Consider the following events:

x_0: a “zero” is transmitted

x_1: a “one” is transmitted

y_0: a “zero” is received

y_1: a “one” is received

The following probabilities are given: $P(x_0) = \frac{1}{2}$, $P(y_0| x_0) = \frac{1}{2}$, and $P(y_0| x_1) = \frac{1}{2}$. The information in bits that you obtain when you learn which symbol has been received (while you know that a “zero” has been transmitted) is _______.

S1 Correct answer is 0.8 to 0.82

Here $P \left(\frac{V_i}{U_0} \right) = \frac{3}{4}$

$P \left(\frac{V_i}{U_0} \right) = 1 - P \left(\frac{V_i}{U_0} \right)$

$= 1 - \frac{3}{4}$

$= \frac{1}{4}$

$H \left(\frac{V_i}{U_0} \right) = - P \left(\frac{V_i}{U_0} \right) \log_2 \left(\frac{V_i}{U_0} \right) - P \left(\frac{V_i}{U_0} \right) \log_2 \left(\frac{V_i}{U_0} \right)$

$= - \frac{3}{4} \log_2 \left(\frac{3}{4} \right) - \frac{1}{4} \log_2 \left(\frac{1}{4} \right)$

$= 0.82$

Q62 The parallel-plate capacitor shown in the figure has movable plates. The capacitor is charged so that the energy stored in it is E when the plate separation is d. The capacitor is then isolated electrically and the plates are moved such that the plate separation become $2d$.

At this new plate separation, what is the energy stored in the capacitor, neglecting fringing effects?

(A) $2E$

(B) $2E$

(C) E

(D) $E/2$

S1 Correct option is (A)

Energy stored when spacing is d is given by

Energy stored = Energy density \times volume

$E_1 = Ed \times V_i$

$V_i = d_i A$

$= dA$

When spacing between the plated is doubled,

$d_2 = 2d$

Then,

$V_2 = d_2 A$

$= 2dA$

$E_2 = Ed \times 2dA$

$= 2Ed(dA)$

Then with the modified capacitor energy stored is doubled.

Q63 A lossless microstrip transmission line consists of a trace of width w. It is drawn over a practically infinite ground plane and is separated by a dielectric slab of thickness t and relative permittivity $\varepsilon_r > 1$. The inductance per unit length and the characteristic impedance of this line are L and Z_0, respectively.

Which one of the following inequalities is always satisfied?

(A) $Z_0 > \sqrt{\frac{Ll}{\varepsilon_0 \varepsilon_r w}}$

(B) $Z_0 < \sqrt{\frac{Ll}{\varepsilon_0 \varepsilon_r w}}$

(C) $Z_0 > \sqrt{\frac{Lw}{\varepsilon_0 \varepsilon_r t}}$

(D) $Z_0 < \sqrt{\frac{Lw}{\varepsilon_0 \varepsilon_r t}}$

S1 Correct option is (B)

Q64 A microwave circuit consisting transmission lines
T_1 and T_2 is shown in the figure. The plot shows the magnitude of the input reflection coefficient Γ as a function of frequency f. The phase velocity of the signal in the transmission lines is 2×10^8 m/s.

The length L (in meters) of T_2 is ______

Correct option is 0.1

\[
Z_L = \frac{50}{|1 - \frac{50}{Z_2+Z_0}|} \quad \text{only when} \quad Z_L = Z_{01}
\]

The satisfied only when $-\frac{50}{Z_2+Z_0} = 50$

\[\beta_{L_{oc}} = \frac{m}{2f} \quad l_{oc} = \frac{m\lambda}{2} \quad L_{oc} = \frac{m}{10f} \quad f = 1 \text{ GHz}\]

(Here $f = 1$ GHz $m = 1$ for minimum length l_{oc})

\[T_{-d} \quad \text{at} \quad x = -d \quad +q \quad x = 0 \quad \text{at} \quad x = +d\]

The charge is at rest at $t = 0$, when a voltage $+V$ is applied to the plate at $-d$ and voltage $-V$ is applied to the plate at $x = +d$. Assume that the quantity of the charge q is small enough that it does not perturb the field set up by the metal plates. The time that the charge q takes to reach the right plate is proportional to

(A) $\frac{d}{V}$
(B) $\frac{d}{V}$
(C) $\frac{d}{V}$
(D) $\frac{d}{V}$

Correct option is (C)

When there is no external field, Change at rest having potential energy only

\[P.E. = qV\]

By an application of an external field, change carries acquire some kinetic energy, with velocity V.

\[qV = \frac{1}{2}mv^2\]

\[V = \sqrt{\frac{2eV}{m}}\]

Time taken to reach $x = d$ plate is known as g_{oc} ‘Gap transit’ time

\[t_g = \frac{d}{V}\]

\[t_g \alpha \frac{d}{V}\]

Q65 A positive charge q is placed at $x = 0$ between two infinite metal plates placed at $x = -d$ and at $x = +d$ respectively. The metal plates lie in the yz plane.